How to Contact The MathWorks:

www.mathworks.com Web
ftp.mathworks.com Anonymous FTP server
comp.soft-sys.matlab Newsgroup

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports

ISBN 0-9672195-3-1

Learning MATLAB
© COPYRIGHT 1999 - 2001 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by or for the federal government of the United States. By accepting delivery of the Program, the government hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part 252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain to the government’s use and disclosure of the Program and Documentation, and shall supersede any conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and Target Language Compiler is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: August 1999 First printing New manual
January 2001 Second printing Revised for MATLAB 6.0 (Release 12)
Introduction

1

About the Student Version ... 1-2
 Student Use Policy .. 1-2
 Differences Between the Student Version
 and the Professional Version 1-3

Obtaining Additional MathWorks Products 1-5

Getting Started with MATLAB .. 1-6

Finding Reference Information 1-7

Troubleshooting and Other Resources 1-8
 Documentation Library ... 1-8
 MathWorks Web Site .. 1-10
 MathWorks Education Web Site 1-10
 MATLAB Related Books ... 1-10
 MathWorks Store ... 1-10
 Usenet Newsgroup .. 1-10
 MathWorks Knowledge Base ... 1-10
 Technical Support .. 1-11
 Product Registration .. 1-11

About MATLAB and Simulink ... 1-12
 What Is MATLAB? .. 1-12
 What Is Simulink? ... 1-14
Installation

Installing on Windows .. 2-2
 System Requirements .. 2-2
 Installing MATLAB ... 2-4
 Installing Additional Toolboxes 2-5
 Accessing the Online Documentation (Help) 2-6

Installing on Linux .. 2-7
 System Requirements .. 2-7
 Installing MATLAB ... 2-8
 Post Installation Procedures 2-13
 Installing Additional Toolboxes 2-13
 Accessing the Online Documentation (Help) 2-14

Development Environment

Introduction ... 3-2

Starting and Quitting MATLAB ... 3-3
 Starting MATLAB .. 3-3
 Quitting MATLAB .. 3-3

MATLAB Desktop .. 3-4

Desktop Tools ... 3-6
 Command Window .. 3-6
 Launch Pad ... 3-8
 Help Browser .. 3-8
 Current Directory Browser 3-11
 Workspace Browser .. 3-12
 Editor/Debugger ... 3-14

Other Development Environment Features 3-15
Getting Started

Matrices and Magic Squares
- Entering Matrices ... 4-3
- sum, transpose, and diag 4-4
- Subscripts .. 4-6
- The Colon Operator ... 4-7
- The magic Function ... 4-8

Expressions
- Variables .. 4-10
- Numbers ... 4-10
- Operators .. 4-11
- Functions .. 4-11
- Examples of Expressions 4-13

Working with Matrices
- Generating Matrices 4-14
- The load Command ... 4-15
- M-Files .. 4-15
- Concatenation ... 4-16
- Deleting Rows and Columns 4-16

More About Matrices and Arrays
- Linear Algebra .. 4-18
- Arrays ... 4-21
- Multivariate Data ... 4-23
- Scalar Expansion ... 4-24
- Logical Subscripting 4-25
- The find Function ... 4-26

Controlling Command Window Input and Output
- The format Command 4-28
- Suppressing Output 4-30
- Entering Long Command Lines 4-30
- Command Line Editing 4-30
Flow Control

- if .. 6-2
- switch and case 6-4
- for .. 6-4
- while .. 6-5
- continue ... 6-5
- break ... 6-6

Other Data Structures 6-7

- Multidimensional Arrays 6-7
- Cell Arrays .. 6-9
- Characters and Text 6-11
- Structures .. 6-14

Scripts and Functions 6-17

- Scripts .. 6-17
- Functions .. 6-18
- Global Variables 6-20
- Passing String Arguments to Functions 6-20
- The eval Function 6-22
- Vectorization 6-23
- Preallocation 6-23
- Function Handles 6-24
- Function Functions 6-24

Demonstration Programs Included with MATLAB .. 6-27

Symbolic Math Toolbox

Introduction ... 7-2

Getting Help .. 7-4
Getting Started
- Symbolic Objects .. 7-5
- Creating Symbolic Variables and Expressions 7-6
- Symbolic and Numeric Conversions 7-7
- Creating Symbolic Math Functions 7-14

Calculus
- Differentiation ... 7-16
- Limits ... 7-20
- Integration ... 7-22
- Symbolic Summation 7-27
- Taylor Series ... 7-28
- Extended Calculus Example 7-29

Simplifications and Substitutions
- Simplifications .. 7-43
- Substitutions .. 7-51

Variable-Precision Arithmetic
- Overview .. 7-58
- Example: Using the Different Kinds of Arithmetic 7-59
- Another Example .. 7-61

Linear Algebra
- Basic Algebraic Operations 7-63
- Linear Algebraic Operations 7-64
- Eigenvalues .. 7-68
- Jordan Canonical Form 7-74
- Singular Value Decomposition 7-76
- Eigenvalue Trajectories 7-78

Solving Equations
- Solving Algebraic Equations 7-86
- Several Algebraic Equations 7-87
- Single Differential Equation 7-90
- Several Differential Equations 7-92
MATLAB Quick Reference

Symbolic Math Toolbox Quick Reference
Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Student Version</td>
<td>1-2</td>
</tr>
<tr>
<td>Obtaining Additional MathWorks Products</td>
<td>1-5</td>
</tr>
<tr>
<td>Getting Started with MATLAB</td>
<td>1-6</td>
</tr>
<tr>
<td>Finding Reference Information</td>
<td>1-7</td>
</tr>
<tr>
<td>Troubleshooting and Other Resources</td>
<td>1-8</td>
</tr>
<tr>
<td>About MATLAB and Simulink</td>
<td>1-12</td>
</tr>
</tbody>
</table>
About the Student Version

MATLAB® & Simulink® are the premier software packages for technical computation, data analysis, and visualization in education and industry. The Student Version of MATLAB & Simulink provides all of the features of professional MATLAB, with no limitations, and the full functionality of professional Simulink, with model sizes up to 300 blocks. The Student Version gives you immediate access to the high-performance numeric computing power you need.

MATLAB allows you to focus on your course work and applications rather than on programming details. It enables you to solve many numerical problems in a fraction of the time it would take you to write a program in a lower level language. MATLAB helps you better understand and apply concepts in applications ranging from engineering and mathematics to chemistry, biology, and economics.

Simulink, included with the Student Version, provides a block diagram tool for modeling and simulating dynamical systems, including signal processing, controls, communications, and other complex systems.

The Symbolic Math Toolbox, also included with the Student Version, is based on the Maple®V symbolic kernel and lets you perform symbolic computations and variable-precision arithmetic.

MATLAB products are used in a broad range of industries, including automotive, aerospace, electronics, environmental, telecommunications, computer peripherals, finance, and medical. More than 400,000 technical professionals at the world’s most innovative technology companies, government research labs, financial institutions, and at more than 2,000 universities rely on MATLAB and Simulink as the fundamental tools for their engineering and scientific work.

Student Use Policy

This Student License is for use in conjunction with courses offered at a degree-granting institution. The MathWorks offers this license as a special service to the student community and asks your help in seeing that its terms are not abused.

To use this Student License, you must be a student using the software in conjunction with courses offered at degree-granting institutions.
You may not use this Student License at a company or government lab. Also, you may not use it for research or for commercial or industrial purposes. In these cases, you can acquire the appropriate professional or academic version of the software by contacting The MathWorks.

Differences Between the Student Version and the Professional Version

MATLAB

This version of MATLAB provides full support for all language features as well as graphics, external interface and Application Program Interface support, and access to every other feature of the professional version of MATLAB.

Note MATLAB does not have a matrix size limitation in this Student Version.

MATLAB Differences. There are a few small differences between the Student Version and the professional version of MATLAB:

- The MATLAB prompt in the Student Version is `EDU>>`
- The window title bars include the words `<Student Version>`
- All printouts contain the footer `Student Version of MATLAB`

This footer is not an option that can be turned off; it will always appear in your printouts.
Simulink
This Student Version contains the complete Simulink product, which is used with MATLAB to model, simulate, and analyze dynamical systems.

Simulink Differences.

• Models are limited to 300 blocks.
• The window title bars include the words
 <Student Version>
• All printouts contain the footer
 Student Version of MATLAB

 This footer is not an option that can be turned off; it will always appear in your printouts.

Note Using Simulink, which is accessible from the Help browser, contains all of the Simulink related information in the Learning Simulink book plus additional, advanced information.

Symbolic Math Toolbox
The Symbolic Math Toolbox included with this Student Version lets you use an important subset of Maple. You can access all of the functions in the professional version of the Symbolic Math Toolbox except maple, mapleinit, mfun, mfunlist, and mhelp. For a complete list of all the available functions, see Appendix B, “Symbolic Math Toolbox Quick Reference.”
Obtaining Additional MathWorks Products

Many college courses recommend MATLAB as their standard instructional software. In some cases, the courses may require particular toolboxes, blocksets, or other products. Many of these products are available for student use. You may purchase and download these additional products at special student prices from the MathWorks Store at www.mathworks.com/store.

Although many professional toolboxes are available at student prices from the MathWorks Store, not every one is available for student use. Some of the toolboxes you can purchase include:

- Communications
- Control System
- Fuzzy Logic
- Image Processing
- Neural Network
- Optimization
- Signal Processing
- Statistics
- Stateflow® (A demo version of Stateflow is included with your Student Version.)

For an up-to-date list of which toolboxes are available, visit the MathWorks Store.

Note The toolboxes that are available for the Student Version of MATLAB & Simulink have the same functionality as the full, professional versions. However, these student versions will only work with the Student Version. Likewise, the professional versions of the toolboxes will not work with the Student Version.
Getting Started with MATLAB

<table>
<thead>
<tr>
<th>What I Want</th>
<th>What I Should Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want to start MATLAB.</td>
<td>(PC) Your MathWorks documentation CD must be in your CD-ROM drive to start MATLAB. Double-click the MATLAB icon on your desktop. (Linux) Enter the <code>matlab</code> command.</td>
</tr>
<tr>
<td>I’m new to MATLAB and want to learn it quickly.</td>
<td>Start by reading Chapters 1 through 6 of Learning MATLAB. The most important things to learn are how to enter matrices, how to use the <code>:</code> (colon) operator, and how to invoke functions. You will also get a brief overview of graphics and programming in MATLAB. After you master the basics, you can access the rest of the documentation through the online help facility (Help).</td>
</tr>
<tr>
<td>I want to look at some samples of what you can do</td>
<td>There are numerous demonstrations included with MATLAB. You can see the demos by selecting Demos from the Help menu. (Linux users type <code>demo</code> at the MATLAB prompt.) There are demos in mathematics, graphics, visualization, and much more. You also will find a large selection of demos at www.mathworks.com/demos.</td>
</tr>
</tbody>
</table>
Finding Reference Information

<table>
<thead>
<tr>
<th>What I Want</th>
<th>What I Should Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>I want to know how to use a specific function.</td>
<td>Use the online help facility (Help). To access Help, use the command <code>helpbrowser</code> or use the Help menu. The MATLAB Function Reference is also available from Help in PDF format (under Printable Documentation) if you want to print out any of the function descriptions in high-quality form. Note: Your MathWorks documentation CD must be in your CD-ROM drive to access Help.</td>
</tr>
</tbody>
</table>
| I want to find a function for a specific purpose but I don’t know its name. | There are several choices:
 • See “MATLAB Quick Reference” in this book for a list of MATLAB functions.
 • From Help, peruse the MATLAB functions by Category or Alphabetically.
 • Use `lookfor` (e.g., `lookfor inverse`) from the command line.
 • Use Index or Search from Help. |
| I want to learn about a specific topic like sparse matrices, ordinary differential equations, or cell arrays. | Use Help to locate the appropriate sections in *Using MATLAB*. |
| I want to know what functions are available in a general area. | Use Help to see the Function Reference by Category, or see Appendix A, “MATLAB Quick Reference,” in this book for a list of MATLAB functions. Help provides access to the reference pages for the hundreds of functions included with MATLAB. |
Troubleshooting and Other Resources

<table>
<thead>
<tr>
<th>What I Want</th>
<th>What I Should Do</th>
</tr>
</thead>
<tbody>
<tr>
<td>I have a MATLAB specific problem I want help with.</td>
<td>Visit the Technical Support section (www.mathworks.com/support) of the MathWorks Web site and search the Knowledge Base of problem solutions.</td>
</tr>
<tr>
<td>I want to report a bug or make a suggestion.</td>
<td>Use Help or send e-mail to bugs@mathworks.com or suggest@mathworks.com.</td>
</tr>
</tbody>
</table>

Documentation Library

Your Student Version of MATLAB & Simulink contains much more documentation than the two printed books, Learning MATLAB and Learning Simulink. On your CD is a personal reference library of every book and reference page distributed by The MathWorks. Access this documentation library from Help.

Note Even though you have the documentation set for the MathWorks family of products, not every product is available for the Student Version of MATLAB & Simulink. For an up-to-date list of available products, visit the MathWorks Store. At the store you can also purchase printed manuals for the MATLAB family of products.

Accessing the Online Documentation

Access the online documentation (Help) directly from your product CD. (Linux users should refer to Chapter 2, “Installation,” for specific information on configuring and accessing the online Help from the CD.)

1 Place the CD in your CD-ROM drive.

2 Select Full Product Family Help from the Help menu.

Help appears in a separate window.
When you start MATLAB for the first time, the Help Navigator displays entries for additional products. To learn how to change the displayed product list, see the “Product Filter” on page 3-10.
MathWorks Web Site
Use your browser to visit the MathWorks Web site, www.mathworks.com. You’ll find lots of information about MathWorks products and how they are used in education and industry, product demos, and MATLAB based books. From the Web site you will also be able to access our technical support resources, view a library of user and company supplied M-files, and get information about products and upcoming events.

MathWorks Education Web Site
This education-specific Web site, www.mathworks.com/education, contains many resources for various branches of engineering, mathematics, and science. Many of these include teaching examples, books, and other related products. You will also find a comprehensive list of links to Web sites where MATLAB is used for teaching and research at universities.

MATLAB Related Books
Hundreds of MATLAB related books are available from many different publishers. An up-to-date list is available at www.mathworks.com/support/books.

MathWorks Store
The MathWorks Store (www.mathworks.com/store) gives you an easy way to purchase add-on products and documentation.

Usenet Newsgroup
If you have access to Usenet newsgroups, you can join the active community of participants in the MATLAB specific group, comp.soft-sys.matlab. This forum is a gathering of professionals and students who use MATLAB and have questions or comments about it and its associated products. This is a great resource for posing questions and answering those of others. MathWorks staff also participates actively in this newsgroup.

MathWorks Knowledge Base
You can access the MathWorks Knowledge Base from the Support link on our Web site. Our Technical Support group maintains this database of frequently asked questions (FAQ). You can peruse the Knowledge Base to quickly locate
relevant data. You will find numerous examples on graphics, mathematics, API, Simulink, and others. You can answer many of your questions by spending a few minutes with this around-the-clock resource.

Technical Support

The MathWorks does not provide telephone technical support to users of the Student Version of MATLAB & Simulink. There are numerous other vehicles of technical support that you can use. The Additional Sources of Information section in the CD holder identifies the ways to obtain support.

Registered users of the Student Version of MATLAB & Simulink can use our electronic technical support services to answer product questions. Visit our Technical Support Web site at www.mathworks.com/support.

After checking the available MathWorks sources for help, if you still cannot resolve your problem, you should contact your instructor. Your instructor should be able to help you, but if not, there is telephone technical support for registered instructors who have adopted the Student Version of MATLAB & Simulink in their courses.

Product Registration

About MATLAB and Simulink

What Is MATLAB?

MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation. Typical uses include:

- Math and computation
- Algorithm development
- Modeling, simulation, and prototyping
- Data analysis, exploration, and visualization
- Scientific and engineering graphics
- Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many technical computing problems, especially those with matrix and vector formulations, in a fraction of the time it would take to write a program in a scalar noninteractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was originally written to provide easy access to matrix software developed by the LINPACK and EISPACK projects. Today, MATLAB uses software developed by the LAPACK and ARPACK projects, which together represent the state-of-the-art in software for matrix computation.

MATLAB has evolved over a period of years with input from many users. In university environments, it is the standard instructional tool for introductory and advanced courses in mathematics, engineering, and science. In industry, MATLAB is the tool of choice for high-productivity research, development, and analysis.

Toolboxes

MATLAB features a family of application-specific solutions called toolboxes. Very important to most users of MATLAB, toolboxes allow you to learn and apply specialized technology. Toolboxes are comprehensive collections of MATLAB functions (M-files) that extend the MATLAB environment to solve
particular classes of problems. Areas in which toolboxes are available include signal processing, control systems, neural networks, fuzzy logic, wavelets, simulation, and many others.

The MATLAB System
The MATLAB system consists of five main parts:

Development Environment. This is the set of tools and facilities that help you use MATLAB functions and files. Many of these tools are graphical user interfaces. It includes the MATLAB desktop and Command Window, a command history, and browsers for viewing help, the workspace, files, and the search path.

The MATLAB Mathematical Function Library. This is a vast collection of computational algorithms ranging from elementary functions like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

The MATLAB language. This is a high-level matrix/array language with control flow statements, functions, data structures, input/output, and object-oriented programming features. It allows both “programming in the small” to rapidly create quick and dirty throw-away programs, and “programming in the large” to create complete large and complex application programs.

Handle Graphics®. This is the MATLAB graphics system. It includes high-level commands for two-dimensional and three-dimensional data visualization, image processing, animation, and presentation graphics. It also includes low-level commands that allow you to fully customize the appearance of graphics as well as to build complete graphical user interfaces on your MATLAB applications.

The MATLAB Application Program Interface (API). This is a library that allows you to write C and Fortran programs that interact with MATLAB. It include facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a computational engine, and for reading and writing MAT-files.
What Is Simulink?
Simulink, a companion program to MATLAB, is an interactive system for simulating nonlinear dynamic systems. It is a graphical mouse-driven program that allows you to model a system by drawing a block diagram on the screen and manipulating it dynamically. It can work with linear, nonlinear, continuous-time, discrete-time, multirate, and hybrid systems.

Blocksets are add-ons to Simulink that provide additional libraries of blocks for specialized applications like communications, signal processing, and power systems.

Real-Time Workshop® is a program that allows you to generate C code from your block diagrams and to run it on a variety of real-time systems.

What Is Stateflow?
Stateflow is an interactive design tool for modeling and simulating complex reactive systems. Tightly integrated with Simulink and MATLAB, Stateflow provides Simulink users with an elegant solution for designing embedded systems by giving them an efficient way to incorporate complex control and supervisory logic within their Simulink models.

With Stateflow, you can quickly develop graphical models of event-driven systems using finite state machine theory, statechart formalisms, and flow diagram notation. Together, Stateflow and Simulink serve as an executable specification and virtual prototype of your system design.

Note Your Student Version of MATLAB & Simulink includes a comprehensive demo version of Stateflow.
Installation

Installing on Windows . 2-2
Installing on Linux . 2-7
Installing on Windows

System Requirements

Note For the most up-to-date information about system requirements, see the system requirements page, available in the Products area at the MathWorks Web site (www.mathworks.com).

MATLAB and Simulink

- Intel-based Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon personal computer
- Microsoft Windows 95, Windows 98, Windows 2000, Windows Me, or Windows NT 4.0 (with Service Pack 5 or 6a)
- CD-ROM drive for installation, program execution, and online documentation
- Disk space varies depending on size of partition. The MathWorks Installer will inform you of the disk space requirement for your particular partition.
- 64 MB RAM minimum; 128 MB RAM strongly recommended
- 8-bit graphics adapter and display (for 256 simultaneous colors)
- Netscape Navigator 4.0 or higher or Microsoft Internet Explorer 4.0 or higher is required.

Other recommended items include:

- Microsoft Windows supported graphics accelerator card
- Microsoft Windows supported printer
- Microsoft Windows supported sound card
- Microsoft Word 7.0 (Office 95), or 8.0 (Office 97), or Office 2000 is required to run the MATLAB Notebook.

Adobe Acrobat Reader is required to view and print the MATLAB online documentation that is in PDF format.
MEX-Files
MEX-files are dynamically linked subroutines that MATLAB can automatically load and execute. They provide a mechanism by which you can call your own C and Fortran subroutines from MATLAB as if they were built-in functions.

For More Information “External Interfaces/API” provides information on how to write MEX-files. “External Interfaces/API Reference” describes the collection of API functions. Both of these are available from Help.

If you plan to build your own MEX-files, one of the following is required:
• Borland C/C++ version 5.0 or 5.02
• Borland C++Builder version 3.0, 4.0, or 5.0
• Compaq Visual Fortran version 6.1
• DIGITAL Visual Fortran version 5.0
• Lcc C version 2.4 (included with MATLAB)
• Microsoft Visual C/C++ version 5.0 or 6.0
• Watcom C/C++ version 10.6 or 11

Note For an up-to-date list of all the compilers supported by MATLAB, see the MathWorks Technical Support Department's Technical Notes at:

Installing MATLAB

This list summarizes the steps in the standard installation procedure. You can perform the installation by simply following the instructions in the dialog boxes presented by the installation program; it walks you through this process.

1. Turn off any virus protection software you have running.

2. Exit any existing copies of MATLAB you have running.

3. Insert the MathWorks product CD into your CD-ROM drive. The installation program starts automatically when the CD-ROM drive is ready. You can also run `setup.exe` from the product CD.

4. Install the Microsoft Java Virtual Machine (J VM), if prompted. The MathWorks Installer requires the Microsoft J VM.

 Note: The Java installation requires a system reboot.

5. View the Welcome screen and review the Software License Agreement.

6. Review the Student Use Policy.

7. Enter your name and school name.

8. To install the complete set of software (MATLAB, Simulink, and the Symbolic Math Toolbox), make sure all of the components are selected in the Product List dialog box.

9. Specify the destination directory, that is, the directory where you want to save the files on your hard drive. To change directories, use the Browse button.

10. When the installation is complete, verify the installation by starting MATLAB and running one of the demo programs. To start MATLAB, double-click on the MATLAB icon that the installer creates on your desktop. To run the demo programs, select Demos from Help.

Note The MathWorks documentation CD must be in your CD-ROM drive to start MATLAB.
Customize any MATLAB environment options, if desired. For example, to include default definitions or any MATLAB expressions that you want executed every time MATLAB is invoked, create a file named `startup.m` in the `$MATLAB\toolbox\local` directory. MATLAB executes this file each time MATLAB is invoked.

Perform any additional configuration by typing the appropriate command at the MATLAB command prompt. For example, to configure the MATLAB Notebook, type `notebook -setup`. To configure a compiler to work with the MATLAB Application Program Interface, type `mex -setup`.

For More Information The MATLAB Installation Guide for PC provides additional installation information. This manual is available from Help.

Installing Additional Toolboxes
To purchase additional toolboxes, visit the MathWorks Store at (www.mathworks.com/store). Once you purchase a toolbox, it is downloaded to your computer.

When you download a toolbox, you receive an installation program for the toolbox. To install the toolbox, run the installation program by double-clicking on its icon. After you successfully install the toolbox, all of its functionality will be available to you when you start MATLAB.

Note Some toolboxes have ReadMe files associated with them. When you download the toolbox, check to see if there is a ReadMe file. These files contain important information about the toolbox and possibly installation and configuration notes. To view the ReadMe file for a toolbox, use the `whatsnew` command.
Accessing the Online Documentation (Help)
Access the online documentation (Help) directly from your documentation CD.

1. Place the documentation CD in your CD-ROM drive.

2. Select **Full Product Family Help** from the **Help** menu in the MATLAB Command Window. You can also type `helpbrowser` at the MATLAB prompt.

The Help browser appears.
Installing on Linux

Note The Student Version of MATLAB & Simulink for the Linux platform is only available in the US and Canada.

System Requirements

Note For the most up-to-date information about system requirements, see the system requirements page, available in the products area at the MathWorks Web site (www.mathworks.com).

MATLAB and Simulink

- Intel-based Pentium, Pentium Pro, Pentium II, Pentium III, or AMD Athlon personal computer
- Linux 2.2.x kernel
 - glibc 2.1.x (2.1.2 or higher recommended)
 - gcc 2.95.2 (gcc, g++, g77)
 - xFree86 3.3.x (3.3.6 or higher recommended)
- X Windows (X11R6)
- 110 MB free disk space for MATLAB, Simulink, and Symbolic Math Toolbox
- 64 MB memory, additional memory strongly recommended
- 64 MB swap space
- CD-ROM drive for installation and online documentation
- 8-bit graphics adapter and display (for 256 simultaneous colors)
- Netscape Navigator 4.0 or higher is required.

Adobe Acrobat Reader is required to view and print the MATLAB online documentation that is in PDF format.
MEX-Files
MEX-files are dynamically linked subroutines that MATLAB can automatically load and execute. They provide a mechanism by which you can call your own C and Fortran subroutines from MATLAB as if they were built-in functions.

For More Information “External Interfaces/API” provides information on how to write MEX-files. “External Interfaces/API Reference” describes the collection of API functions. Both of these are available from Help.

If you plan to build your own MEX-files, you need an ANSIC C compiler (e.g., the GNU C compiler, gcc).

Note For an up-to-date list of all the compilers supported by MATLAB, see the MathWorks Technical Support Department’s Technical Notes at:

Installing MATLAB
The following instructions describe how to install the Student Version of MATLAB & Simulink on your computer.

Note It is recommended that you log in as root to perform your installation.

Installing the Software
To install the Student Version:

1 If your CD-ROM drive is not accessible to your operating system, you will need to create a directory to be the mount point for it.

 mkdir /cdrom

2 Place the MathWorks product CD into the CD-ROM drive.
3 Execute the command to mount the CD-ROM drive on your system. For example,

```
# mount -t iso9660 /dev/cdrom /cdrom
```

should work on most systems. If your `/etc/fstab` file has a line similar to
```
/dev/cdrom /cdrom iso9660 noauto,ro,user,exec 0 0
```

then nonroot users can mount the CD-ROM using the simplified command
```
$ mount /cdrom
```

Note If the `exec` option is missing (as it often is by default, for security reasons), you will receive a “Permission denied” error when attempting to run the install script. To remedy this, either use the full mount command shown above (as root) or add the `exec` option to the file `/etc/fstab`.

4 Move to the installation location using the `cd` command. For example, if you are going to install into the location `/usr/local/matlab6`, use the commands

```
cd /usr/local
mkdir matlab6
cd matlab6
```

Subsequent instructions in this section refer to this directory as `$MATLAB`.

5 Run the CD install script.

```
/cdrom/install_glnx86.sh
```

The welcome screen appears. Select **OK** to proceed with the installation.

Note If you need additional help on any step during this installation process, click the **Help** button at the bottom of the dialog box.
6 Accept or reject the software licensing agreement displayed. If you accept the terms of the agreement, you may proceed with the installation.

7 The MATLAB Root Directory screen is displayed. Select OK if the pathname for the MATLAB root directory is correct; otherwise, change it to the desired location.

8 The system displays your license file. Press OK.
9 The installation program displays the **Product Installation Options** screen, which is similar to this.

The products you are licensed to install are listed in the **Items to install** list box. The right list box displays the products that you do not want to install. To install the complete Student Version of MATLAB & Simulink, you must install all the products for which you are licensed (MATLAB, MATLAB Toolbox, MATLAB Kernel, Simulink, and Symbolic Math Toolbox). Select **OK**.
10 The installation program displays the **Installation Data** screen.

Specify the directory location in your file system for symbolic links to the `matlab` and `mex` scripts. Choose a directory such as `/usr/local/bin`. You must be logged in as `root` to do this.

Select **OK** to continue.

11 The **Begin Product Installation** screen is displayed. Select **OK** to start the installation. After the installation is complete, the **Product Installation Complete** screen is displayed, assuming your installation is successful. Select **Exit** to exit from the setup program.

12 You must edit the `docopt.m` M-file located in the `$MATLAB/toolbox/local` directory to specify the path to the online documentation (Help). For example, if `/cdrom` is the path to your CD-ROM drive, then you would use `/cdrom/help`. To set the path using this example, change the lines in the `if isunix` block in the `docopt.m` file to

```matlab
if isunix % UNIX
    doccmd = '';
    options = '';
    docpath = '/cdrom/help';
```

The `docopt.m` file also allows you to specify an alternative Web browser or additional initial browser options. It is configured for Netscape Navigator.
If desired, customize any MATLAB environment options. For example, to include default definitions or any MATLAB expressions that you want executed every time MATLAB is invoked, create a file named `startup.m` in the `$MATLAB/toolbox/local` directory. MATLAB executes this file each time MATLAB is invoked.

Start MATLAB by entering the `matlab` command. If you did not set up symbolic links in a directory on your path, type `$MATLAB/bin/matlab`.

Post Installation Procedures

Successful Installation

If you want to use the MATLAB Application Program Interface, you must configure the `mex` script to work with your compiler. Also, some toolboxes may require some additional configuration. For more information, see “Installing Additional Toolboxes” later in this section.

Unsuccessful Installation

If MATLAB does not execute correctly after installation:

1. Check the “R12 Release Notes” for the latest information concerning installation. This document is accessible from Help.

2. Repeat the installation procedure from the beginning but run the CD install script using the `-t` option.

 `/cdrom/install_glnx86.sh -t`

For More Information The MATLAB Installation Guide for UNIX provides additional installation information. This manual is available from Help.

Installing Additional Toolboxes

To purchase additional toolboxes, visit the MathWorks Store at (www.mathworks.com/store). Once you purchase a toolbox, it is downloaded to your computer. When you download a toolbox on Linux, you receive a tar file (a standard, compressed formatted file).
To install the toolbox, you must:

1. Place the tar file in $MATLAB and un-tar it.

 \texttt{tar -xf filename}

2. Run \texttt{install}.

After you successfully install the toolbox, all of its functionality will be available to you when you start MATLAB.

\textbf{Note} Some toolboxes have \texttt{ReadMe} files associated with them. When you download the toolbox, check to see if there is a \texttt{ReadMe} file. These files contain important information about the toolbox and possibly installation and configuration notes. To view the \texttt{ReadMe} file for a toolbox, use the \texttt{whatsnew} command.

\textbf{Accessing the Online Documentation (Help)}

Access the online documentation (Help) directly from your documentation CD.

1. Place the documentation CD in your CD-ROM drive and mount it.

2. Select \texttt{Full Product Family Help} from the \texttt{Help} menu in the MATLAB Command Window. You can also type \texttt{helpbrowser} at the MATLAB prompt.

The Help browser appears.
Development Environment

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>3-2</td>
</tr>
<tr>
<td>Starting and Quitting MATLAB</td>
<td>3-3</td>
</tr>
<tr>
<td>MATLAB Desktop</td>
<td>3-4</td>
</tr>
<tr>
<td>Desktop Tools</td>
<td>3-6</td>
</tr>
<tr>
<td>Other Development Environment Features</td>
<td>3-15</td>
</tr>
</tbody>
</table>
Introduction

This chapter provides a brief introduction to starting and quitting MATLAB, and the tools and functions that help you to work with MATLAB variables and files. For more information about the topics covered here, see the corresponding topics under “Development Environment” in the MATLAB documentation, which is available online.
Starting and Quitting MATLAB

Starting MATLAB

On a Microsoft Windows platform, to start MATLAB, double-click the MATLAB shortcut icon on your Windows desktop.

On Linux, to start MATLAB, type `matlab` at the operating system prompt.

Note On the Microsoft Windows platform, the documentation CD must be in your CD-ROM drive to start MATLAB. On both platforms, the documentation CD must be in your CD-ROM drive to access the online documentation.

After starting MATLAB, the MATLAB desktop opens – see “MATLAB Desktop” on page 3-4.

You can change the directory in which MATLAB starts, define startup options including running a script upon startup, and reduce startup time in some situations.

Quitting MATLAB

To end your MATLAB session, select Exit MATLAB from the File menu in the desktop, or type `quit` in the Command Window. To execute specified functions each time MATLAB quits, such as saving the workspace, you can create and run a `finish.m` script.
MATLAB Desktop

When you start MATLAB, the MATLAB desktop appears, containing tools (graphical user interfaces) for managing files, variables, and applications associated with MATLAB.

The first time MATLAB starts, the desktop appears as shown in the following illustration, although your Launch Pad may contain different entries.
You can change the way your desktop looks by opening, closing, moving, and resizing the tools in it. You can also move tools outside of the desktop or return them back inside the desktop (docking). All the desktop tools provide common features such as context menus and keyboard shortcuts.

You can specify certain characteristics for the desktop tools by selecting **Preferences** from the **File** menu. For example, you can specify the font characteristics for Command Window text. For more information, click the **Help** button in the **Preferences** dialog box.
Desktop Tools

This section provides an introduction to MATLAB’s desktop tools. You can also use MATLAB functions to perform most of the features found in the desktop tools. The tools are:

- “Command Window” on page 3-6
- “Command History” on page 3-7
- “Launch Pad” on page 3-8
- “Help Browser” on page 3-8
- “Current Directory Browser” on page 3-11
- “Workspace Browser” on page 3-12
- “Array Editor” on page 3-13
- “Editor/Debugger” on page 3-14

Command Window

Use the Command Window to enter variables and run functions and M-files. For more information on controlling input and output, see “Controlling Command Window Input and Output” on page 4-28.
Command History

Lines you enter in the Command Window are logged in the Command History window. In the Command History, you can view previously used functions, and copy and execute selected lines.

To save the input and output from a MATLAB session to a file, use the \texttt{diary} function.

\textbf{Note} \ If other users share the same machine with you, using the same log in information, then they will have access to the functions you ran during a session via the Command History. If you do not want other users to have access to the Command History from your session, select \texttt{Clear Command History} from the Edit menu before you quit MATLAB.

Running External Programs

You can run external programs from the MATLAB Command Window. The exclamation point character \texttt{!} is a shell escape and indicates that the rest of the input line is a command to the operating system. This is useful for invoking
utilities or running other programs without quitting MATLAB. On Linux, for example,

```
!emacs magik.m
```

invokes an editor called emacs for a file named magik.m. When you quit the external program, the operating system returns control to MATLAB.

Launch Pad

MATLAB’s **Launch Pad** provides easy access to tools, demos, and documentation.

Sample of listings in Launch Pad - you’ll see listings for all products installed on your system.

- **Help** - double-click to go directly to documentation for the product.
- **Demos** - double-click to display the demo launcher for the product.
- **Tools** - double-click to open the tool.

Click + to show the listing for a product.

Help Browser

Use the Help browser to search and view documentation for all MathWorks products. The Help browser is a Web browser integrated into the MATLAB desktop that displays HTML documents.
To open the Help browser, click the help button ? in the toolbar, or type `helpbrowser` in the Command Window.

Tabs in the **Help Navigator** pane provide different ways to find documentation. Use the close box to hide the pane. Drag the separator bar to adjust the width of the panes. View documentation in the display pane.

The Help browser consists of two panes, the Help Navigator, which you use to find information, and the display pane, where you view the information.
Help Navigator
Use to Help Navigator to find information. It includes:

- **Product filter** – Set the filter to show documentation only for the products you specify.

Note In the Student Version of MATLAB & Simulink, the product filter is initially set to display a subset of the entire documentation set. You can add or delete which product documentation is displayed by using the product filter.

- **Contents** tab – View the titles and tables of contents of documentation for your products.
- **Index** tab – Find specific index entries (selected keywords) in the MathWorks documentation for your products.
- **Search** tab – Look for a specific phrase in the documentation. To get help for a specific function, set the **Search type** to **Function Name**.
- **Favorites** tab – View a list of documents you previously designated as favorites.

Display Pane
After finding documentation using the Help Navigator, view it in the display pane. While viewing the documentation, you can:

- **Browse to other pages** – Use the arrows at the tops and bottoms of the pages, or use the back and forward buttons in the toolbar.
- **Bookmark pages** – Click the **Add to Favorites** button in the toolbar.
- **Print pages** – Click the print button in the toolbar.
- **Find a term in the page** – Type a term in the **Find in page** field in the toolbar and click **Go**.

Other features available in the display pane are: copying information, evaluating a selection, and viewing Web pages.

For More Help
In addition to the Help browser, you can use help functions. To get help for a specific function, use `doc`. For example, `doc format` displays help for the
format function in the Help browser. Other means for getting help include contacting Technical Support (http://www.mathworks.com/support) and participating in the newsgroup for MATLAB users, comp.soft-sys.matlab.

Current Directory Browser

MATLAB file operations use the current directory and the search path as reference points. Any file you want to run must either be in the current directory or on the search path.

A quick way to view or change the current directory is by using the Current Directory field in the desktop toolbar as shown below.

Current Directory: D:mymfiles

To search for, view, open, and make changes to MATLAB-related directories and files, use the MATLAB Current Directory browser. Alternatively, you can use the functions dir, cd, and delete.

Use the pathname edit box to view directories and their contents.
Click the find button to search for content within M-files.

Double-click a file to open it in an appropriate tool.

View the help portion of the selected M-file.
Search Path
To determine how to execute functions you call, MATLAB uses a search path to find M-files and other MATLAB-related files, which are organized in directories on your file system. Any file you want to run in MATLAB must reside in the current directory or in a directory that is on the search path. By default, the files supplied with MATLAB and MathWorks toolboxes are included in the search path.

To see which directories are on the search path or to change the search path, select **Set Path** from the **File** menu in the desktop, and use the **Set Path** dialog box. Alternatively, you can use the **path** function to view the search path, **addpath** to add directories to the path, and **rmpath** to remove directories from the path.

Workspace Browser
The MATLAB workspace consists of the set of variables (named arrays) built up during a MATLAB session and stored in memory. You add variables to the workspace by using functions, running M-files, and loading saved workspaces.

To view the workspace and information about each variable, use the Workspace browser, or use the functions **who** and **whos**.

![Workspace Browser](image)

Double-click a variable to see and change its contents in the Array Editor.
To delete variables from the workspace, select the variable and select **Delete** from the **Edit** menu. Alternatively, use the **clear** function.

The workspace is not maintained after you end the MATLAB session. To save the workspace to a file that can be read during a later MATLAB session, select **Save Workspace As** from the **File** menu, or use the **save** function. This saves the workspace to a binary file called a MAT-file, which has a `.mat` extension. There are options for saving to different formats. To read in a MAT-file, select **Import Data** from the **File** menu, or use the **load** function.

Array Editor

Double-click on a variable in the Workspace browser to see it in the Array Editor. Use the Array Editor to view and edit a visual representation of one- or two-dimensional numeric arrays, strings, and cell arrays of strings that are in the workspace.

- Change values of array elements.
- Change the display format.

Use the tabs to view the variables you have open in the Array Editor.
Editor/ Debugger

Use the Editor/Debugger to create and debug M-files, which are programs you write to run MATLAB functions. The Editor/Debugger provides a graphical user interface for basic text editing, as well as for M-file debugging.

Set breakpoints where you want execution to pause so you can examine variables.

Find and replace strings.

Comment selected lines and specify indenting style using the Text menu.

Hold the cursor over a variable and its current value appears (known as a datatip).

You can use any text editor to create M-files, such as Emacs, and can use preferences (accessible from the desktop File menu) to specify that editor as the default. If you use another editor, you can still use the MATLAB Editor/Debugger for debugging, or you can use debugging functions, such as \texttt{dbstop}, which sets a breakpoint.

If you just need to view the contents of an M-file, you can display it in the Command Window by using the \texttt{type} function.
Other Development Environment Features

Additional development environment features are:

- Importing and Exporting Data - Techniques for bringing data created by other applications into the MATLAB workspace, including the Import Wizard, and packaging MATLAB workspace variables for use by other applications.

- Improving M-File Performance - The Profiler is a tool that measures where an M-file is spending its time. Use it to help you make speed improvements.

- Interfacing with Source Control Systems - Access your source control system from within MATLAB, Simulink, and Stateflow.

- Using Notebook - Access MATLAB’s numeric computation and visualization software from within a word processing environment (Microsoft Word).
Getting Started

Matrices and Magic Squares 4-2
Expressions 4-10
Working with Matrices 4-14
More About Matrices and Arrays 4-18
Controlling Command Window Input and Output 4-28
Matrices and Magic Squares

In MATLAB, a matrix is a rectangular array of numbers. Special meaning is sometimes attached to 1-by-1 matrices, which are scalars, and to matrices with only one row or column, which are vectors. MATLAB has other ways of storing both numeric and nonnumeric data, but in the beginning, it is usually best to think of everything as a matrix. The operations in MATLAB are designed to be as natural as possible. Where other programming languages work with numbers one at a time, MATLAB allows you to work with entire matrices quickly and easily. A good example matrix, used throughout this book, appears in the Renaissance engraving Melancholia I by the German artist and amateur mathematician Albrecht Dürer.
This image is filled with mathematical symbolism, and if you look carefully, you will see a matrix in the upper right corner. This matrix is known as a magic square and was believed by many in Dürer’s time to have genuinely magical properties. It does turn out to have some fascinating characteristics worth exploring.

Entering Matrices

The best way for you to get started with MATLAB is to learn how to handle matrices. Start MATLAB and follow along with each example.

You can enter matrices into MATLAB in several different ways:

- Enter an explicit list of elements.
- Load matrices from external data files.
- Generate matrices using built-in functions.
- Create matrices with your own functions in M-files.

Start by entering Dürer’s matrix as a list of its elements. You have only to follow a few basic conventions:

- Separate the elements of a row with blanks or commas.
- Use a semicolon, ;, to indicate the end of each row.
- Surround the entire list of elements with square brackets, [].

To enter Dürer’s matrix, simply type in the Command Window

\[A = [16 \ 3 \ 2 \ 13; 5 \ 10 \ 11 \ 8; 9 \ 6 \ 7 \ 12; 4 \ 15 \ 14 \ 1] \]
MATLAB displays the matrix you just entered,

\[
A = \\
\begin{bmatrix}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1 \\
\end{bmatrix}
\]

This exactly matches the numbers in the engraving. Once you have entered the matrix, it is automatically remembered in the MATLAB workspace. You can refer to it simply as \(A \). Now that you have \(A \) in the workspace, take a look at what makes it so interesting. Why is it magic?

sum, transpose, and diag

You're probably already aware that the special properties of a magic square have to do with the various ways of summing its elements. If you take the sum along any row or column, or along either of the two main diagonals, you will always get the same number. Let's verify that using MATLAB. The first statement to try is

\[
\text{sum}(A)
\]

MATLAB replies with

\[
\text{ans} = \\
\begin{bmatrix}
34 & 34 & 34 & 34 \\
\end{bmatrix}
\]

When you don't specify an output variable, MATLAB uses the variable \textit{ans}, short for \textit{answer}, to store the results of a calculation. You have computed a row vector containing the sums of the columns of \(A \). Sure enough, each of the columns has the same sum, the \textit{magic} sum, 34.

How about the row sums? MATLAB has a preference for working with the columns of a matrix, so the easiest way to get the row sums is to transpose the matrix, compute the column sums of the transpose, and then transpose the result. The transpose operation is denoted by an apostrophe or single quote, \(' \). It flips a matrix about its main diagonal and it turns a row vector into a column vector. So

\[
A'
\]

produces
ans =
 16 5 9 4
 3 10 6 15
 2 11 7 14
 13 8 12 1

And

sum(A')'

produces a column vector containing the row sums

ans =
 34
 34
 34
 34
 34

The sum of the elements on the main diagonal is easily obtained with the help of the \texttt{diag} function, which picks off that diagonal.

\texttt{diag(A)}

produces

ans =
 16
 10
 7
 1

and

\texttt{sum(diag(A))}

produces

ans =
 34

The other diagonal, the so-called antidiagonal, is not so important mathematically, so MATLAB does not have a ready-made function for it. But a function originally intended for use in graphics, \texttt{fliplr}, flips a matrix from left to right.
sum(diag(fliplr(A)))

ans =
34

You have verified that the matrix in Dürer’s engraving is indeed a magic square and, in the process, have sampled a few MATLAB matrix operations. The following sections continue to use this matrix to illustrate additional MATLAB capabilities.

Subscripts

The element in row \(i \) and column \(j \) of \(A \) is denoted by \(A(i,j) \). For example, \(A(4,2) \) is the number in the fourth row and second column. For our magic square, \(A(4,2) \) is 15. So it is possible to compute the sum of the elements in the fourth column of \(A \) by typing

\[
A(1,4) + A(2,4) + A(3,4) + A(4,4)
\]

This produces

\[
ans =
34
\]

but is not the most elegant way of summing a single column.

It is also possible to refer to the elements of a matrix with a single subscript, \(A(k) \). This is the usual way of referencing row and column vectors. But it can also apply to a fully two-dimensional matrix, in which case the array is regarded as one long column vector formed from the columns of the original matrix. So, for our magic square, \(A(8) \) is another way of referring to the value 15 stored in \(A(4,2) \).

If you try to use the value of an element outside of the matrix, it is an error.

\[
t = A(4,5)
\]

Index exceeds matrix dimensions.

On the other hand, if you store a value in an element outside of the matrix, the size increases to accommodate the newcomer.

\[
X = A;
X(4,5) = 17
\]
\[
X = \\
\begin{bmatrix}
16 & 3 & 2 & 13 & 0 \\
5 & 10 & 11 & 8 & 0 \\
9 & 6 & 7 & 12 & 0 \\
4 & 15 & 14 & 1 & 17
\end{bmatrix}
\]

The Colon Operator

The colon, `:`, is one of MATLAB's most important operators. It occurs in several different forms. The expression

\[
1:10
\]

is a row vector containing the integers from 1 to 10

\[
1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10
\]

To obtain nonunit spacing, specify an increment. For example,

\[
100:-7:50
\]

is

\[
100 \ 93 \ 86 \ 79 \ 72 \ 65 \ 58 \ 51
\]

and

\[
0:pi/4:pi
\]

is

\[
0 \ 0.7854 \ 1.5708 \ 2.3562 \ 3.1416
\]

Subscript expressions involving colons refer to portions of a matrix.

\[
A(1:k,j)
\]

is the first \(k\) elements of the \(j\)th column of \(A\). So

\[
\text{sum}(A(1:4,4))
\]

computes the sum of the fourth column. But there is a better way. The colon by itself refers to all the elements in a row or column of a matrix and the keyword `end` refers to the last row or column. So

\[
\text{sum}(A(:,end))
\]
computes the sum of the elements in the last column of A.

$$\text{ans} = 34$$

Why is the magic sum for a 4-by-4 square equal to 34? If the integers from 1 to 16 are sorted into four groups with equal sums, that sum must be

$$\text{sum}(1:16)/4$$

which, of course, is

$$\text{ans} = 34$$

Using the Symbolic Math Toolbox, you can discover that the magic sum for an n-by-n magic square is $(n^3 + n)/2$.

The magic Function

MATLAB actually has a built-in function that creates magic squares of almost any size. Not surprisingly, this function is named `magic`.

```
B = magic(4)
```

```
B =
    16     2     3    13
    5    11    10     8
    9     7     6    12
    4    14    15     1
```

This matrix is almost the same as the one in the Dürer engraving and has all the same “magic” properties; the only difference is that the two middle columns are exchanged. To make this B into Dürer’s A, swap the two middle columns.

```
A = B(:,[1 3 2 4])
```
This says “for each of the rows of matrix B, reorder the elements in the order 1, 3, 2, 4.” It produces

\[
A = \begin{bmatrix}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1 \\
\end{bmatrix}
\]

Why would Dürer go to the trouble of rearranging the columns when he could have used MATLAB’s ordering? No doubt he wanted to include the date of the engraving, 1514, at the bottom of his magic square.

For More Information “Using MATLAB,” which is accessible from Help, provides comprehensive material on the development environment, mathematics, programming and data types, graphics, 3-D visualization, external interfaces/API, and creating graphical user interfaces in MATLAB.
Expressions

Like most other programming languages, MATLAB provides mathematical expressions, but unlike most programming languages, these expressions involve entire matrices. The building blocks of expressions are:

- Variables
- Numbers
- Operators
- Functions

Variables

MATLAB does not require any type declarations or dimension statements. When MATLAB encounters a new variable name, it automatically creates the variable and allocates the appropriate amount of storage. If the variable already exists, MATLAB changes its contents and, if necessary, allocates new storage. For example,

```
num_students = 25
```

creates a 1-by-1 matrix named `num_students` and stores the value 25 in its single element.

Variable names consist of a letter, followed by any number of letters, digits, or underscores. MATLAB uses only the first 31 characters of a variable name. MATLAB is case sensitive; it distinguishes between uppercase and lowercase letters. `A` and `a` are not the same variable. To view the matrix assigned to any variable, simply enter the variable name.

Numbers

MATLAB uses conventional decimal notation, with an optional decimal point and leading plus or minus sign, for numbers. Scientific notation uses the letter `e` to specify a power-of-ten scale factor. Imaginary numbers use either `i` or `j` as a suffix. Some examples of legal numbers are

```
3    -99    0.0001
9.6397238  1.60210e-20  6.02252e23
1i    -3.14159j   3e5i
```
All numbers are stored internally using the long format specified by the IEEE floating-point standard. Floating-point numbers have a finite precision of roughly 16 significant decimal digits and a finite range of roughly 10^{-308} to 10^{+308}.

Operators

Expressions use familiar arithmetic operators and precedence rules.

+ Addition
- Subtraction
* Multiplication
/ Division
\ Left division (described in “Matrices and Linear Algebra” in Using MATLAB)
^ Power
' Complex conjugate transpose
() Specify evaluation order

Functions

MATLAB provides a large number of standard elementary mathematical functions, including abs, sqrt, exp, and sin. Taking the square root or logarithm of a negative number is not an error; the appropriate complex result is produced automatically. MATLAB also provides many more advanced mathematical functions, including Bessel and gamma functions. Most of these functions accept complex arguments. For a list of the elementary mathematical functions, type

help elfun
For a list of more advanced mathematical and matrix functions, type
```matlab
clear
help specfun
help elmat
```

For More Information Appendix A, “MATLAB Quick Reference,” contains brief descriptions of the MATLAB functions. Use Help to access complete descriptions of all the MATLAB functions by category or alphabetically.

Some of the functions, like `sqrt` and `sin`, are built-in. They are part of the MATLAB core so they are very efficient, but the computational details are not readily accessible. Other functions, like `gamma` and `sinh`, are implemented in M-files. You can see the code and even modify it if you want.

Several special functions provide values of useful constants.

- **pi** 3.14159265...
- **i** Imaginary unit, \(\sqrt{-1} \)
- **j** Same as `i`
- **eps** Floating-point relative precision, \(2^{-52} \)
- **realmin** Smallest floating-point number, \(2^{-1022} \)
- **realmax** Largest floating-point number, \((2 - \varepsilon)2^{1023} \)
- **Inf** Infinity
- **NaN** Not-a-number

Infinity is generated by dividing a nonzero value by zero, or by evaluating well defined mathematical expressions that overflow, i.e., exceed `realmax`. Not-a-number is generated by trying to evaluate expressions like `0/0` or `Inf*Inf` that do not have well defined mathematical values.

The function names are not reserved. It is possible to overwrite any of them with a new variable, such as
eps = 1.e-6

and then use that value in subsequent calculations. The original function can be restored with

clear eps

Examples of Expressions
You have already seen several examples of MATLAB expressions. Here are a few more examples, and the resulting values.

rho = (1+sqrt(5))/2
rho =
 1.6180

a = abs(3+4i)
a =
 5

z = sqrt(besselk(4/3,rho-i))
z =
 0.3730 + 0.3214i

huge = exp(log(realmax))
huge =
 1.7977e+308

toobig = pi*huge
toobig =
 Inf
Working with Matrices

This section introduces you to other ways of creating matrices.

Generating Matrices
MATLAB provides four functions that generate basic matrices.

zeros All zeros
ones All ones
rand Uniformly distributed random elements
randn Normally distributed random elements

Here are some examples.

\[
Z = \text{zeros}(2, 4)
\]

\[
Z =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
F = 5*\text{ones}(3, 3)
\]

\[
F =
\begin{bmatrix}
5 & 5 & 5 \\
5 & 5 & 5 \\
5 & 5 & 5
\end{bmatrix}
\]

\[
N = \text{fix}(10*\text{rand}(1, 10))
\]

\[
N =
\begin{bmatrix}
4 & 9 & 4 & 4 & 8 & 5 & 2 & 6 & 8 & 0
\end{bmatrix}
\]

\[
R = \text{randn}(4, 4)
\]

\[
R =
\begin{bmatrix}
1.0668 & 0.2944 & -0.6918 & -1.4410 \\
0.0593 & -1.3362 & 0.8580 & 0.5711 \\
-0.0956 & 0.7143 & 1.2540 & 0.3999 \\
-0.8323 & 1.6236 & -1.5937 & 0.6900
\end{bmatrix}
\]
The load Command

The `load` command reads binary files containing matrices generated by earlier MATLAB sessions, or reads text files containing numeric data. The text file should be organized as a rectangular table of numbers, separated by blanks, with one row per line, and an equal number of elements in each row. For example, outside of MATLAB, create a text file containing these four lines.

```
16.0  3.0  2.0  13.0
5.0  10.0  11.0  8.0
9.0  6.0  7.0  12.0
4.0  15.0  14.0  1.0
```

Store the file under the name `magik.dat`. Then the command

```
load magik.dat
```

reads the file and creates a variable, `magik`, containing our example matrix.

An easy way to read data into MATLAB in many text or binary formats is to use the Import Wizard.

M-Files

You can create your own matrices using M-files, which are text files containing MATLAB code. Use the MATLAB Editor or another text editor to create a file containing the same statements you would type at the MATLAB command line. Save the file under a name that ends in `.m`.

For example, create a file containing these five lines.

```
A = [ ...
    16.0  3.0  2.0  13.0
    5.0  10.0  11.0  8.0
    9.0  6.0  7.0  12.0
    4.0  15.0  14.0  1.0 ];
```

Store the file under the name `magik.m`. Then the statement

```
magik
```

reads the file and creates a variable, `A`, containing our example matrix.
Concatenation

Concatenation is the process of joining small matrices to make bigger ones. In fact, you made your first matrix by concatenating its individual elements. The pair of square brackets, `[]`, is the concatenation operator. For an example, start with the 4-by-4 magic square, \(A \), and form

\[
B = [A \quad A+32; \quad A+48 \quad A+16]
\]

The result is an 8-by-8 matrix, obtained by joining the four submatrices.

\[
B = \\
\begin{bmatrix}
16 & 3 & 2 & 13 & 48 & 35 & 34 & 45 \\
5 & 10 & 11 & 8 & 37 & 42 & 43 & 40 \\
9 & 6 & 7 & 12 & 41 & 38 & 39 & 44 \\
4 & 15 & 14 & 1 & 36 & 47 & 46 & 33 \\
64 & 51 & 50 & 61 & 32 & 19 & 18 & 29 \\
53 & 58 & 59 & 56 & 21 & 26 & 27 & 24 \\
57 & 54 & 55 & 60 & 25 & 22 & 23 & 28 \\
52 & 63 & 62 & 49 & 20 & 31 & 30 & 17
\end{bmatrix}
\]

This matrix is half way to being another magic square. Its elements are a rearrangement of the integers 1:64. Its column sums are the correct value for an 8-by-8 magic square.

\[
\text{sum}(B)
\]

\[
\text{ans} = \\
260 \quad 260
\]

But its row sums, \(\text{sum}(B')' \), are not all the same. Further manipulation is necessary to make this a valid 8-by-8 magic square.

Deleting Rows and Columns

You can delete rows and columns from a matrix using just a pair of square brackets. Start with

\[
X = A;
\]

Then, to delete the second column of \(X \), use

\[
X(:, 2) = []
\]
This changes X to

$$X =
\begin{bmatrix}
16 & 2 & 13 \\
5 & 11 & 8 \\
9 & 7 & 12 \\
4 & 14 & 1
\end{bmatrix}$$

If you delete a single element from a matrix, the result isn’t a matrix anymore. So, expressions like

$$X(1, 2) = []$$

result in an error. However, using a single subscript deletes a single element, or sequence of elements, and reshapes the remaining elements into a row vector. So

$$X(2:2:10) = []$$

results in

$$X =
\begin{bmatrix}
16 & 9 & 2 & 7 & 13 & 12 & 1
\end{bmatrix}$$
More About Matrices and Arrays

This sections shows you more about working with matrices and arrays, focusing on:

- Linear algebra
- Arrays
- Multivariate data

Linear Algebra

Informally, the terms matrix and array are often used interchangeably. More precisely, a matrix is a two-dimensional numeric array that represents a linear transformation. The mathematical operations defined on matrices are the subject of linear algebra.

Dürer's magic square

\[
A = \begin{bmatrix}
16 & 3 & 2 & 13 \\
5 & 10 & 11 & 8 \\
9 & 6 & 7 & 12 \\
4 & 15 & 14 & 1 \\
\end{bmatrix}
\]

provides several examples that give a taste of MATLAB matrix operations. You've already seen the matrix transpose, \(A'\). Adding a matrix to its transpose produces a symmetric matrix.

\[
A + A' = \begin{bmatrix}
32 & 8 & 11 & 17 \\
8 & 20 & 17 & 23 \\
11 & 17 & 14 & 26 \\
17 & 23 & 26 & 2 \\
\end{bmatrix}
\]

The multiplication symbol, \(*\), denotes the matrix multiplication involving inner products between rows and columns. Multiplying the transpose of a matrix by the original matrix also produces a symmetric matrix.
A' * A

ans =
 378 212 206 360
 212 370 368 206
 206 368 370 212
 360 206 212 378

The determinant of this particular matrix happens to be zero, indicating that the matrix is singular.

d = det(A)

d =
 0

The reduced row echelon form of A is not the identity.

R = rref(A)

R =
 1 0 0 1
 0 1 0 -3
 0 0 1 3
 0 0 0 0

Since the matrix is singular, it does not have an inverse. If you try to compute the inverse with

X = inv(A)

you will get a warning message

Warning: Matrix is close to singular or badly scaled.
 Results may be inaccurate. RCOND = 1.175530e-017.

Roundoff error has prevented the matrix inversion algorithm from detecting exact singularity. But the value of rcond, which stands for reciprocal condition estimate, is on the order of eps, the floating-point relative precision, so the computed inverse is unlikely to be of much use.
The eigenvalues of the magic square are interesting.

```matlab
e = eig(A)
```

```
e =
   34.0000
   8.0000
   0.0000
  -8.0000
```

One of the eigenvalues is zero, which is another consequence of singularity. The largest eigenvalue is 34, the magic sum. That’s because the vector of all ones is an eigenvector.

```matlab
v = ones(4,1)
```

```
v =
   1
   1
   1
   1
```

```matlab
A*v
```

```
an =
   34
   34
   34
   34
   34
```

When a magic square is scaled by its magic sum,

```matlab
P = A/34
```

the result is a doubly stochastic matrix whose row and column sums are all one.

```
P =
   0.4706    0.0882    0.0588    0.3824
   0.1471    0.2941    0.3235    0.2353
   0.2647    0.1765    0.2059    0.3529
   0.1176    0.4412    0.4118    0.0294
```
Such matrices represent the transition probabilities in a Markov process. Repeated powers of the matrix represent repeated steps of the process. For our example, the fifth power

\[p^5 \]

is

\[
\begin{array}{cccc}
0.2507 & 0.2495 & 0.2494 & 0.2504 \\
0.2497 & 0.2501 & 0.2502 & 0.2500 \\
0.2500 & 0.2498 & 0.2499 & 0.2503 \\
0.2496 & 0.2506 & 0.2505 & 0.2493 \\
\end{array}
\]

This shows that as \(k \) approaches infinity, all the elements in the \(k \)th power, \(p^k \), approach \(1/4 \).

Finally, the coefficients in the characteristic polynomial

\[\text{poly}(A) \]

are

\[
1\quad -34\quad -64\quad 2176\quad 0
\]

This indicates that the characteristic polynomial

\[\det(A - \lambda I) \]

is

\[\lambda^4 - 34\lambda^3 - 64\lambda^2 + 2176\lambda \]

The constant term is zero, because the matrix is singular, and the coefficient of the cubic term is -34, because the matrix is magic!

For More Information All of the MATLAB math functions are described in the “MATLAB Function Reference,” which is accessible from Help.

Arrays

When they are taken away from the world of linear algebra, matrices become two dimensional numeric arrays. Arithmetic operations on arrays are done element-by-element. This means that addition and subtraction are the same
for arrays and matrices, but that multiplicative operations are different. MATLAB uses a dot, or decimal point, as part of the notation for multiplicative array operations.

The list of operators includes:

- Addition
- Subtraction
- Element-by-element multiplication
- Element-by-element division
- Element-by-element left division
- Element-by-element power
- Unconjugated array transpose

If the Dürer magic square is multiplied by itself with array multiplication

\[A \ast A \]

the result is an array containing the squares of the integers from 1 to 16, in an unusual order.

\[
\begin{array}{cccc}
256 & 9 & 4 & 169 \\
25 & 100 & 121 & 64 \\
81 & 36 & 49 & 144 \\
16 & 225 & 196 & 1 \\
\end{array}
\]

Building Tables

Array operations are useful for building tables. Suppose \(n \) is the column vector

\[
n = (0:9)';
\]

Then

\[
pows = [n \ n.^2 \ 2.^n]
\]
builds a table of squares and powers of two.

```matlab
pows =
0   0   1
1   1   2
2   4   4
3   9   8
4  16  16
5  25  32
6  36  64
7  49  64
8  64 256
9  81 512
```

The elementary math functions operate on arrays element by element. So

```matlab
format short g
x = (1:0.1:2)';
logs = [x log10(x)]
```

builds a table of logarithms.

```matlab
logs =
 1.0       0
 1.1  0.04139
 1.2  0.07918
 1.3  0.11394
 1.4  0.14613
 1.5  0.17609
 1.6  0.20412
 1.7  0.23045
 1.8  0.25527
 1.9  0.27875
 2.0  0.30103
```

Multivariate Data

MATLAB uses column-oriented analysis for multivariate statistical data. Each column in a data set represents a variable and each row an observation. The \((i,j)\) th element is the \(i\) th observation of the \(j\) th variable.
As an example, consider a data set with three variables:

- Heart rate
- Weight
- Hours of exercise per week

For five observations, the resulting array might look like:

\[
D =
\begin{bmatrix}
72 & 134 & 3.2 \\
81 & 201 & 3.5 \\
69 & 156 & 7.1 \\
82 & 148 & 2.4 \\
75 & 170 & 1.2 \\
\end{bmatrix}
\]

The first row contains the heart rate, weight, and exercise hours for patient 1, the second row contains the data for patient 2, and so on. Now you can apply many of MATLAB’s data analysis functions to this data set. For example, to obtain the mean and standard deviation of each column:

\[
\mu = \text{mean}(D), \sigma = \text{std}(D)
\]

\[
\mu =
\begin{bmatrix}
75.8 \\
161.8 \\
3.48 \\
\end{bmatrix}
\]

\[
\sigma =
\begin{bmatrix}
5.6303 \\
25.499 \\
2.2107 \\
\end{bmatrix}
\]

For a list of the data analysis functions available in MATLAB, type

\> help datafun

If you have access to the Statistics Toolbox, type

\> help stats

Scalar Expansion

Matrices and scalars can be combined in several different ways. For example, a scalar is subtracted from a matrix by subtracting it from each element. The average value of the elements in our magic square is 8.5, so

\[
B = A - 8.5
\]
forms a matrix whose column sums are zero.

\[
B =
\begin{bmatrix}
7.5 & -5.5 & -6.5 & 4.5 \\
-3.5 & 1.5 & 2.5 & -0.5 \\
0.5 & -2.5 & -1.5 & 3.5 \\
-4.5 & 6.5 & 5.5 & -7.5 \\
\end{bmatrix}
\]

\[
\text{sum}(B)
\]

\[
\text{ans} =
\begin{bmatrix}
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

With scalar expansion, MATLAB assigns a specified scalar to all indices in a range. For example,

\[
B(1:2,2:3) = 0
\]

zeros out a portion of \(B\)

\[
B =
\begin{bmatrix}
7.5 & 0 & 0 & 4.5 \\
-3.5 & 0 & 0 & -0.5 \\
0.5 & -2.5 & -1.5 & 3.5 \\
-4.5 & 6.5 & 5.5 & -7.5 \\
\end{bmatrix}
\]

Logical Subscripting

The logical vectors created from logical and relational operations can be used to reference subarrays. Suppose \(X\) is an ordinary matrix and \(L\) is a matrix of the same size that is the result of some logical operation. Then \(X(L)\) specifies the elements of \(X\) where the elements of \(L\) are nonzero.

This kind of subscripting can be done in one step by specifying the logical operation as the subscripting expression. Suppose you have the following set of data.

\[
X =
\begin{bmatrix}
2.1 & 1.7 & 1.6 & 1.5 & \text{NaN} & 1.9 & 1.8 & 1.5 & 5.1 & 1.8 & 1.4 & 2.2 & 1.6 & 1.8 \\
\end{bmatrix}
\]

The NaN is a marker for a missing observation, such as a failure to respond to an item on a questionnaire. To remove the missing data with logical indexing,
use `finite(x)`, which is true for all finite numerical values and false for `NaN` and `Inf`.

\[
x = x(\text{finite}(x))
\]
\[
x =
\begin{bmatrix}
2.1 & 1.7 & 1.6 & 1.5 & 1.9 & 1.8 & 1.5 & 5.1 & 1.8 & 1.4 & 2.2 & 1.6 & 1.8
\end{bmatrix}
\]

Now there is one observation, 5.1, which seems to be very different from the others. It is an outlier. The following statement removes outliers, in this case those elements more than three standard deviations from the mean.

\[
x = x(\text{abs}(x - \text{mean}(x)) \leq 3 \times \text{std}(x))
\]
\[
x =
\begin{bmatrix}
2.1 & 1.7 & 1.6 & 1.5 & 1.9 & 1.8 & 1.5 & 1.8 & 1.4 & 2.2 & 1.6 & 1.8
\end{bmatrix}
\]

For another example, highlight the location of the prime numbers in Dürer's magic square by using logical indexing and scalar expansion to set the nonprimes to 0.

\[
A(\neg \text{isprime}(A)) = 0
\]

\[
A =
\begin{bmatrix}
0 & 3 & 2 & 13 \\
5 & 0 & 11 & 0 \\
0 & 0 & 7 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

The find Function

The `find` function determines the indices of array elements that meet a given logical condition. In its simplest form, `find` returns a column vector of indices. Transpose that vector to obtain a row vector of indices. For example,

\[
k = \text{find}(\text{isprime}(A))'
\]

picks out the locations, using one-dimensional indexing, of the primes in the magic square.

\[
k =
\begin{bmatrix}
2 & 5 & 9 & 10 & 11 & 13
\end{bmatrix}
\]
Display those primes, as a row vector in the order determined by \(k \), with

\[
\text{A}(k)
\]

\[
\text{ans} = \\
5 \quad 3 \quad 2 \quad 11 \quad 7 \quad 13
\]

When you use \(k \) as a left-hand-side index in an assignment statement, the matrix structure is preserved.

\[
\text{A}(k) = \text{NaN}
\]

\[
\text{A} = \\
16 \quad \text{NaN} \quad \text{NaN} \quad \text{NaN} \\
\text{NaN} \quad 10 \quad \text{NaN} \quad 8 \\
9 \quad 6 \quad \text{NaN} \quad 12 \\
4 \quad 15 \quad 14 \quad 1
\]
Controlling Command Window Input and Output

So far, you have been using the MATLAB command line, typing commands and expressions, and seeing the results printed in the Command Window. This section describes how to:

- Control the appearance of the output values
- Suppress output from MATLAB commands
- Enter long commands at the command line
- Edit the command line

The format Command

The `format` command controls the numeric format of the values displayed by MATLAB. The command affects only how numbers are displayed, not how MATLAB computes or saves them. Here are the different formats, together with the resulting output produced from a vector \(x \) with components of different magnitudes.

\[
x = \begin{bmatrix} 4/3 & 1.2345 \times 10^{-6} \end{bmatrix}
\]

Note To ensure proper spacing, use a fixed-width font, such as Fixedsys or Courier.

\[
x = \begin{bmatrix} 4/3 & 1.2345 \times 10^{-6} \end{bmatrix}
\]

```
format short
1.3333 0.0000
```

```
format short e
1.3333e+000 1.2345e-006
```

```
format short g
1.3333 1.2345e-006
```
format long
1.33333333333333 0.00000123450000

format long e
1.333333333333333e+000 1.234500000000000e-006

format long g
1.33333333333333 1.2345e-006

format bank
1.33 0.00

format rat
4/3 1/810045

format hex
3ff5555555555555 3eb4b6231abfd271

If the largest element of a matrix is larger than 10^3 or smaller than 10^{-3}, MATLAB applies a common scale factor for the short and long formats.

In addition to the format commands shown above

format compact

suppresses many of the blank lines that appear in the output. This lets you view more information on a screen or window. If you want more control over the output format, use the sprintf and fprintf functions.
Suppressing Output

If you simply type a statement and press Return or Enter, MATLAB automatically displays the results on screen. However, if you end the line with a semicolon, MATLAB performs the computation but does not display any output. This is particularly useful when you generate large matrices. For example,

\[A = \text{magic}(100); \]

Entering Long Command Lines

If a statement does not fit on one line, use three periods, ..., followed by Return or Enter to indicate that the statement continues on the next line. For example,

\[s = 1 \cdot 1/2 + 1/3 \cdot 1/4 + 1/5 \cdot 1/6 + 1/7 \ldots \]
\[\ldots + 1/8 + 1/9 \cdot 1/10 + 1/11 \cdot 1/12; \]

Blank spaces around the =, +, and - signs are optional, but they improve readability.

Command Line Editing

Various arrow and control keys on your keyboard allow you to recall, edit, and reuse commands you have typed earlier. For example, suppose you mistakenly enter

\[\text{rho} = (1 + \text{sqt}(5))/2 \]

You have misspelled sqrt. MATLAB responds with

Undefined function or variable 'sqt'.

Instead of retyping the entire line, simply press the ↑ key. The misspelled command is redisplayed. Use the ← key to move the cursor over and insert the missing r. Repeated use of the ↑ key recalls earlier lines. Typing a few characters and then the ↑ key finds a previous line that begins with those characters. You can also copy previously executed commands from the Command History. For more information, see “Command History” on page 3-7.
The list of available command line editing keys is different on different computers. Experiment to see which of the following keys is available on your machine. (Many of these keys will be familiar to users of the Emacs editor.)

- **↑** \(\text{Ctrl+p} \) Recall previous line
- **↓** \(\text{Ctrl+n} \) Recall next line
- **←** \(\text{Ctrl+b} \) Move back one character
- **→** \(\text{Ctrl+f} \) Move forward one character
- **Ctrl+→** \(\text{Ctrl+r} \) Move right one word
- **Ctrl+←** \(\text{Ctrl+l} \) Move left one word
- **Home** \(\text{Ctrl+a} \) Move to beginning of line
- **End** \(\text{Ctrl+e} \) Move to end of line
- **Esc** \(\text{Ctrl+u} \) Clear line
- **Del** \(\text{Ctrl+d} \) Delete character at cursor
- **Backspace** \(\text{Ctrl+h} \) Delete character before cursor
- **Ctrl+k** Delete to end of line

Tab Completion
MATLAB completes the name of a function, variable, filename, or handle graphics property if you type the first few letters and then press the Tab key. If there is a unique name, the name is automatically completed. If there is more than one name that starts with the letters you typed, press the Tab key again to see a list of the possibilities.
Graphics

Basic Plotting ... 5-2
Editing Plots ... 5-14
Mesh and Surface Plots 5-18
Images .. 5-24
Printing Graphics ... 5-26
Handle Graphics .. 5-28
Graphics User Interfaces 5-35
Animations ... 5-37
Basic Plotting

MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as annotating and printing these graphs. This section describes a few of the most important graphics functions and provides examples of some typical applications.

For More Information “Graphics” and “3-D Visualization” provide in-depth coverage of MATLAB graphics and visualization tools. Access these from Help.

Creating a Plot

The `plot` function has different forms, depending on the input arguments. If `y` is a vector, `plot(y)` produces a piecewise linear graph of the elements of `y` versus the index of the elements of `y`. If you specify two vectors as arguments, `plot(x,y)` produces a graph of `y` versus `x`.

For example, these statements use the `colon` operator to create a vector of `x` values ranging from zero to `2\pi`, compute the sine of these values, and plot the result.

```matlab
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```

Now label the axes and add a title. The characters `\pi` create the symbol π.

```matlab
xlabel(‘x = 0:2\pi’) 
ylabel(‘Sine of x’) 
title(’Plot of the Sine Function’,’FontSize’,12)
```
Multiple Data Sets in One Graph

Multiple x-y pair arguments create multiple graphs with a single call to `plot`. MATLAB automatically cycles through a predefined (but user settable) list of colors to allow discrimination between each set of data. For example, these statements plot three related functions of \(x \), each curve in a separate distinguishing color.

\[
\begin{align*}
y_2 &= \sin(x - 0.25) \\
y_3 &= \sin(x - 0.5) \\
\text{plot}(x,y,x,y_2,x,y_3)
\end{align*}
\]

The `legend` command provides an easy way to identify the individual plots.

\[
\text{legend('sin(x)','sin(x-.25)','sin(x-.5)')}
\]

Specifying Line Styles and Colors

It is possible to specify color, line styles, and markers (such as plus signs or circles) when you plot your data using the `plot` command.

```matlab
plot(x, y, 'color_style_marker')
```

`color_style_marker` is a string containing from one to four characters (enclosed in single quotation marks) constructed from a color, a line style, and a marker type:

- Color strings are 'c', 'm', 'y', 'r', 'g', 'b', 'w', and 'k'. These correspond to cyan, magenta, yellow, red, green, blue, white, and black.
• Linestyle strings are ' - ' for solid, ' - - ' for dashed, ': ' for dotted, ' .. ' for dash-dot, and ' none ' for no line.
• The marker types are '+ ', ' o ', '* ', and ' x ' and the filled marker types ' s ' for square, ' d ' for diamond, ' ^ ' for up triangle, ' v ' for down triangle, '>' for right triangle, '< ' for left triangle, ' p ' for pentagram, ' h ' for hexagram, and none for no marker.

You can also edit color, line style, and markers interactively. See “Editing Plots” on page 5-14 for more information.

Plotting Lines and Markers

If you specify a marker type but not a linestyle, MATLAB draws only the marker. For example,

```matlab
plot(x,y,'ks')
```

plots black squares at each data point, but does not connect the markers with a line.

The statement

```matlab
plot(x,y,'r:+')
```

plots a red dotted line and places plus sign markers at each data point. You may want to use fewer data points to plot the markers than you use to plot the lines. This example plots the data twice using a different number of points for the dotted line and marker plots.

```matlab
x1 = 0:pi/100:2*pi;
x2 = 0:pi/10:2*pi;
plot(x1,sin(x1),'r:',x2,sin(x2),'r+')
```
Imaginary and Complex Data

When the arguments to `plot` are complex, the imaginary part is ignored except when `plot` is given a single complex argument. For this special case, the command is a shortcut for a plot of the real part versus the imaginary part. Therefore,

```
plot(Z)
```

where `Z` is a complex vector or matrix, is equivalent to

```
plot(real(Z), imag(Z))
```
For example,

```plaintext
t = 0:pi/10:2*pi;
plot(exp(i*t),'-o')
axis equal
```

draws a 20-sided polygon with little circles at the vertices. The command, `axis equal`, makes the individual tick mark increments on the x- and y-axes the same length, which makes this plot more circular in appearance.

Adding Plots to an Existing Graph

The `hold` command enables you to add plots to an existing graph. When you type

```
hold on
```

MATLAB does not replace the existing graph when you issue another plotting command; it adds the new data to the current graph, rescaling the axes if necessary.
For example, these statements first create a contour plot of the `peaks` function, then superimpose a pseudocolor plot of the same function.

\[
[x, y, z] = \text{peaks;}
\text{contour}(x, y, z, 20, 'k')
\text{hold on}
\text{pcolor}(x, y, z)
\text{shading interp}
\text{hold off}
\]

The `hold on` command causes the `pcolor` plot to be combined with the `contour` plot in one figure.

For More Information See “Creating Specialized Plots” in Help for information on a variety of graph types.
Figure Windows

Graphing functions automatically open a new figure window if there are no figure windows already on the screen. If a figure window exists, MATLAB uses that window for graphics output. If there are multiple figure windows open, MATLAB targets the one that is designated the “current figure” (the last figure used or clicked in).

To make an existing figure window the current figure, you can click the mouse while the pointer is in that window or you can type

\[
\text{figure(n)}
\]

where \(n\) is the number in the figure title bar. The results of subsequent graphics commands are displayed in this window.

To open a new figure window and make it the current figure, type

\[
\text{figure}
\]

Clearing the Figure for a New Plot

When a figure already exists, most plotting commands clear the axes and use this figure to create the new plot. However, these commands do not reset figure properties, such as the background color or the colormap. If you have set any figure properties in the previous plot, you may want to use the \texttt{clf} command with the \texttt{reset} option,

\[
\text{clf reset}
\]

before creating your new plot to set the figure’s properties to their defaults.

For More Information

See “Figure Properties” and the reference page for the \texttt{figure} command in Help. See “Controlling Graphics Output” for information on how to control property resetting in your graphics programs.

Multiple Plots in One Figure

The \texttt{subplot} command enables you to display multiple plots in the same window or print them on the same piece of paper. Typing

\[
\text{subplot}(m,n,p)
\]
partitions the figure window into an \(m \times n \) matrix of small subplots and selects the \(p \)th subplot for the current plot. The plots are numbered along first the top row of the figure window, then the second row, and so on. For example, these statements plot data in four different subregions of the figure window.

\[
\begin{align*}
t &= 0:pi/10:2*pi; \\
[X,Y,Z] &= \text{cylinder}(4*\cos(t)); \\
\text{subplot}(2,2,1); &\quad \text{mesh}(X) \\
\text{subplot}(2,2,2); &\quad \text{mesh}(Y) \\
\text{subplot}(2,2,3); &\quad \text{mesh}(Z) \\
\text{subplot}(2,2,4); &\quad \text{mesh}(X,Y,Z)
\end{align*}
\]

Controlling the Axes

The \texttt{axis} command supports a number of options for setting the scaling, orientation, and aspect ratio of plots. You can also set these options interactively. See “Editing Plots” on page 5-14 for more information.
Setting Axis Limits
By default, MATLAB finds the maxima and minima of the data to choose the axis limits to span this range. The `axis` command enables you to specify your own limits

```
axis([xmin xmax ymin ymax])
```

or for three-dimensional graphs,

```
axis([xmin xmax ymin ymax zmin zmax])
```

Use the command

```
axis auto
```

to re-enable MATLAB’s automatic limit selection.

Setting Axis Aspect Ratio
`axis` also enables you to specify a number of predefined modes. For example,

```
axis square
```

makes the x-axes and y-axes the same length.

```
axis equal
```

makes the individual tick mark increments on the x- and y-axes the same length. This means

```
plot(exp(i*[0:pi/10:2*pi]))
```

followed by either `axis square` or `axis equal` turns the oval into a proper circle.

```
axis auto
```

returns the axis scaling to its default, automatic mode.

Setting Axis Visibility
You can use the `axis` command to make the axis visible or invisible.

```
axis on
```

makes the axis visible. This is the default.

```
axis off
```
makes the axis invisible.

Setting Grid Lines

The `grid` command toggles grid lines on and off. The statement

```matlab
grid on
```

turns the grid lines on and

```matlab
grid off
```

turns them back off again.

For More Information See the `axis` and `axes` reference pages and “Axes Properties” in Help.

Axis Labels and Titles

The `xlabel`, `ylabel`, and `zlabel` commands add x-, y-, and z-axis labels. The `title` command adds a title at the top of the figure and the `text` function inserts text anywhere in the figure. A subset of TeX notation produces Greek letters. You can also set these options interactively. See “Editing Plots” on page 5-14 for more information.

```matlab
t = -pi:pi/100:pi;
y = sin(t);
plot(t,y)
axis([-pi pi -1 1])
xlabel('-\pi \leq \textit{t} \leq \pi')
ylabel('sin(t)')
title('Graph of the sine function')
text(1,-1/3,'\textit{Note the odd symmetry}')
```
For More Information See “Formatting Graphs” in Help for additional information on adding labels and annotations to your graphs.

Saving a Figure
To save a figure, select Save from the File menu. The figure is saved as a FIG-file, which you can load using the open or hgload commands.

Formats for Importing into Other Applications
You can export the figure as a standard graphics format, such as TIFF, for use with other applications. To do this, select Export from the File menu. You can also export figures from the command line using the saveas and print commands.
Editing Plots

MATLAB formats a graph to provide readability, setting the scale of axes, including tick marks on the axes, and using color and line style to distinguish the plots in the graph. However, if you are creating presentation graphics, you may want to change this default formatting or add descriptive labels, titles, legends and other annotations to help explain your data.

MATLAB supports two ways to edit the plots you create:

- Using the mouse to select and edit objects interactively
- Using MATLAB functions at the command-line or in an M-file

Interactive Plot Editing

If you enable plot editing mode in the MATLAB figure window, you can perform point-and-click editing of the objects in your graph. In this mode, you select the object or objects you want to edit by double-clicking on it. This starts the Property Editor, which provides access to properties of the object that control its appearance and behavior.

For more information about interactive editing, see “Using Plot Editing Mode” on page 5-15. For information about editing object properties in plot editing mode, see “Using the Property Editor” on page 5-16.

Note Plot editing mode provides an alternative way to access the properties of MATLAB graphic objects. However, you can only access a subset of object properties through this mechanism. You may need to use a combination of interactive editing and command line editing to achieve the effect you desire.

Using Functions to Edit Graphs

If you prefer to work from the MATLAB command line or if you are creating an M-file, you can use MATLAB commands to edit the graphs you create. Taking advantage of MATLAB’s Handle Graphics system, you can use the `set` and `get` commands to change the properties of the objects in a graph. For more information about using command line, see “Handle Graphics” on page 5-28.
Using Plot Editing Mode

The MATLAB figure window supports a point-and-click style editing mode that you can use to customize the appearance of your graph. The following illustration shows a figure window with plot editing mode enabled and labels the main plot editing mode features.

Click this button to start plot edit mode.

Use the Edit, Insert, and Tools menus to add objects or edit existing objects in the graph.

Double-click on an object to select it.

Position labels, legends, and other objects by clicking and dragging them.

Access object-specific plot edit functions through context-sensitive pop-up menus.

Use these toolbar buttons to add text, arrows, and lines to a graph.
Using the Property Editor

In plot editing mode, you can use a graphical user interface, called the Property Editor, to edit the properties of objects in the graph. The Property Editor provides access to many properties of the root, figure, axes, line, light, patch, image, surfaces rectangle, and text objects. For example, using the Property Editor, you can change the thickness of a line, add titles and axes labels, add lights, and perform many other plot editing tasks.

This figure shows the components of the Property Editor interface.

Use these buttons to move back and forth among the graphics objects you have edited.

Use the navigation bar to select the object you want to edit.

Click on a tab to view a group of properties.

Click here to view a list of values for this field.

Check this checkbox to see the effect of your changes as you make them.

Click OK to apply your changes and dismiss the Property Editor.

Click Cancel to dismiss the Property Editor without applying your changes.

Click Apply to apply your changes without dismissing the Property Editor.

Click Help to get information about particular properties.
Starting the Property Editor

You start the Property Editor by double-clicking on an object in a graph, such as a line, or by right-clicking on an object and selecting the Properties option from the object’s context menu.

You can also start the Property Editor by selecting either the Figure Properties, Axes Properties, or Current Object Properties from the figure window Edit menu. These options automatically enable plot editing mode, if it is not already enabled.

Once you start the Property Editor, keep it open throughout an editing session. It provides access to all the objects in the graph. If you click on another object in the graph, the Property Editor displays the set of panels associated with that object type. You can also use the Property Editor’s navigation bar to select an object in the graph to edit.

To save a figure, select Save from the File menu. To save it using a graphics format, such as TIFF, for use with other applications, select Export from the File menu. You can also save from the command line – use the saveas command, including any options to save the figure in a different format.
Mesh and Surface Plots

MATLAB defines a surface by the z-coordinates of points above a grid in the x-y plane, using straight lines to connect adjacent points. The `mesh` and `surf` plotting functions display surfaces in three dimensions. `mesh` produces wireframe surfaces that color only the lines connecting the defining points. `surf` displays both the connecting lines and the faces of the surface in color.

Visualizing Functions of Two Variables

To display a function of two variables, \(z = f(x,y) \):

1. Generate \(X \) and \(Y \) matrices consisting of repeated rows and columns, respectively, over the domain of the function.
2. Use \(X \) and \(Y \) to evaluate and graph the function.

The `meshgrid` function transforms the domain specified by a single vector or two vectors \(x \) and \(y \) into matrices \(X \) and \(Y \) for use in evaluating functions of two variables. The rows of \(X \) are copies of the vector \(x \) and the columns of \(Y \) are copies of the vector \(y \).

Example - Graphing the sinc Function

This example evaluates and graphs the two-dimensional sinc function, \(\frac{\sin(r)}{r} \), between the x and y directions. \(R \) is the distance from origin, which is at the center of the matrix. Adding `eps` (a MATLAB command that returns the smallest floating-point number on your system) avoids the indeterminate 0/0 at the origin.

```matlab
[X, Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
mesh(X, Y, Z, 'EdgeColor', 'black')
```
By default, MATLAB colors the mesh using the current colormap. However, this example uses a single-colored mesh by specifying the `EdgeColor` surface property. See the `surface` reference page for a list of all surface properties.

You can create a transparent mesh by disabling hidden line removal.

```
hidden off
```

See the `hidden` reference page for more information on this option.

Example - Colored Surface Plots

A surface plot is similar to a mesh plot except the rectangular faces of the surface are colored. The color of the faces is determined by the values of Z and the colormap (a colormap is an ordered list of colors). These statements graph the sinc function as a surface plot, select a colormap, and add a color bar to show the mapping of data to color.

```
surf(X,Y,Z)
colorbar
```
See the colormap reference page for information on colormaps.

For More Information See “Creating 3-D Graphs” in Help for more information on surface plots.

Transparent Surfaces
You can make the faces of a surface transparent to a varying degree. Transparency (referred to as the alpha value) can be specified for the whole object or can be based on an alphamap, which behaves in a way analogous to colormaps. For example,

```matlab
surf(X,Y,Z)
colormap hsv
alpha(.4)
```
produces a surface with a face alpha value of 0.4. Alpha values range from 0 (completely transparent) to 1 (not transparent).

For More Information See “Transparency” in Help for more information on using this feature.

Surface Plots with Lighting
Lighting is the technique of illuminating an object with a directional light source. In certain cases, this technique can make subtle differences in surface shape easier to see. Lighting can also be used to add realism to three-dimensional graphs.

This example uses the same surface as the previous examples, but colors it red and removes the mesh lines. A light object is then added to the left of the “camera” (that is the location in space from where you are viewing the surface).

```matlab
surf(X,Y,Z,'FaceColor','red','EdgeColor','none')
camlight left; lighting phong
```
Manipulating the Surface
The Camera Toolbar provides a way to interactively explore 3-D graphics. Display the toolbar by selecting Camera Toolbar from the figure window's View menu. Here is the toolbar with the orbit camera tool selected:

The Camera Toolbar enables you to move the camera around the surface object, zoom, add a light, and perform other viewing operations without issuing commands. The following picture shows the surface viewed by orbiting the camera toward the bottom. A scene light has been added to illuminate the underside of the surface, which is not lit by the light added in the previous section.
For More Information See the “Lighting as a Visualization Tool” and “View Control with the Camera Toolbar” in Help for information on these techniques.
Images

Two-dimensional arrays can be displayed as images, where the array elements determine brightness or color of the images. For example, the statements

```matlab
load durer
whos
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>648x509</td>
<td>2638656</td>
<td>double array</td>
</tr>
<tr>
<td>caption</td>
<td>2x28</td>
<td>112</td>
<td>char array</td>
</tr>
<tr>
<td>map</td>
<td>128x3</td>
<td>3072</td>
<td>double array</td>
</tr>
</tbody>
</table>

load the file `durer.mat`, adding three variables to the workspace. The matrix `X` is a 648-by-509 matrix and `map` is a 128-by-3 matrix that is the colormap for this image.

Note MAT-files, such as `durer.mat`, are binary files that can be created on one platform and later read by MATLAB on a different platform.

The elements of `X` are integers between 1 and 128, which serve as indices into the colormap, `map`. Then

```matlab
image(X)
colormap(map)
axis image
```

reproduces Dürer’s etching shown at the beginning of this book. A high resolution scan of the magic square in the upper right corner is available in another file. Type

```matlab
load detail
```

and then use the uparrow key on your keyboard to reexecute the `image`, `colormap`, and `axis` commands. The statement

```matlab
colormap(hot)
```

adds some unusual coloring to the sixteenth century etching. The function `hot` generates a colormap containing shades of reds, oranges, and yellows.
Typically a given image matrix has a specific colormap associated with it. See the colormap reference page for a list of other predefined colormaps.

For More Information See “Displaying Bit-Mapped Images” in Help for information on the image processing capabilities of MATLAB.
Printing Graphics

You can print a MATLAB figure directly on a printer connected to your computer or you can export the figure to one of the standard graphic file formats supported by MATLAB. There are two ways to print and export figures:

- Using the Print option under the File menu
- Using the print command

Printing from the Menu

There are four menu options under the File menu that pertain to printing:

- The Page Setup option displays a dialog box that enables you to adjust characteristics of the figure on the printed page.
- The Print Setup option displays a dialog box that sets printing defaults, but does not actually print the figure.
- The Print Preview option enables you to view the figure the way it will look on the printed page.
- The Print option displays a dialog box that lets you select standard printing options and print the figure.

Generally, use Print Preview to determine whether the printed output is what you want. If not, use the Page Setup dialog box to change the output settings. Select the Page Setup dialog box Help button to display information on how to set up the page.

Exporting Figure to Graphics Files

The Export option under the File menu enables you to export the figure to a variety of standard graphics file formats.

Using the Print Command

The print command provides more flexibility in the type of output sent to the printer and allows you to control printing from M-files. The result can be sent directly to your default printer or stored in a specified file. A wide variety of output formats, including TIFF, JPEG, and PostScript, is available.

For example, this statement saves the contents of the current figure window as color Encapsulated Level 2 PostScript in the file called magicsquare.eps. It
also includes a TIFF preview, which enables most word processors to display the picture

 print -depsc2 -tiff magicsquare.eps

To save the same figure as a TIFF file with a resolution of 200 dpi, use the command

 print -dtiff -r200 magicsquare.tif

If you type print on the command line,

 print

MATLAB prints the current figure on your default printer.

For More Information See the `print` command reference page and “Basic Printing and Exporting” in Help for more information on printing.
Handle Graphics

When you use a plotting command, MATLAB creates the graph using various graphics objects, such as lines, text, and surfaces (see “Graphics Objects” on page 5-28 for a complete list). All graphics objects have properties that control the appearance and behavior of the object. MATLAB enables you to query the value of each property and set the value of most properties.

Whenever MATLAB creates a graphics object, it assigns an identifier (called a handle) to the object. You can use this handle to access the object’s properties. Handle Graphics is useful if you want to:

• Modify the appearance of graphs.
• Create custom plotting commands by writing M-files that create and manipulate objects directly.

Graphics Objects

Graphics objects are the basic elements used to display graphics and user interface elements. This table lists the graphics objects.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root</td>
<td>Top of the hierarchy corresponding to the computer screen</td>
</tr>
<tr>
<td>Figure</td>
<td>Window used to display graphics and user interfaces</td>
</tr>
<tr>
<td>Axes</td>
<td>Axes for displaying graphs in a figure</td>
</tr>
<tr>
<td>Uicontrol</td>
<td>User interface control that executes a function in response to user interaction</td>
</tr>
<tr>
<td>Uimenu</td>
<td>User-defined figure window menu</td>
</tr>
<tr>
<td>Uicontextmenu</td>
<td>Pop-up menu invoked by right clicking on a graphics object</td>
</tr>
<tr>
<td>Image</td>
<td>Two-dimensional pixel-based picture</td>
</tr>
</tbody>
</table>
Object Hierarchy

The objects are organized in a tree structured hierarchy reflecting their interdependence. For example, line objects require axes objects as a frame of reference. In turn, axes objects exist only within figure objects. This diagram illustrates the tree structure.

<table>
<thead>
<tr>
<th>Object</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light</td>
<td>Light sources that affect the coloring of patch and surface objects</td>
</tr>
<tr>
<td>Line</td>
<td>Line used by functions such as plot, plot3, semilogx</td>
</tr>
<tr>
<td>Patch</td>
<td>Filled polygon with edges</td>
</tr>
<tr>
<td>Rectangle</td>
<td>Two-dimensional shape varying from rectangles to ovals</td>
</tr>
<tr>
<td>Surface</td>
<td>Three-dimensional representation of matrix data created by plotting the value of the data as heights above the x-y plane</td>
</tr>
<tr>
<td>Text</td>
<td>Character string</td>
</tr>
</tbody>
</table>
Creating Objects
Each object has an associated function that creates the object. These functions have the same name as the objects they create. For example, the `text` function creates `text` objects, the `figure` function creates `figure` objects, and so on. MATLAB’s high-level graphics functions (like `plot` and `surf`) call the appropriate low-level function to draw their respective graphics. For more information about an object and a description of its properties, see the reference page for the object’s creation function. Object creation functions have the same name as the object. For example, the object creation function for `axes` objects is called `axes`.

Commands for Working with Objects
This table lists commands commonly used when working with objects.

<table>
<thead>
<tr>
<th>Function</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>copyobj</code></td>
<td>Copy graphics object</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Delete an object</td>
</tr>
<tr>
<td><code>findobj</code></td>
<td>Find the handle of objects having specified property values</td>
</tr>
<tr>
<td><code>gca</code></td>
<td>Return the handle of the current axes</td>
</tr>
<tr>
<td><code>gcf</code></td>
<td>Return the handle of the current figure</td>
</tr>
<tr>
<td><code>gco</code></td>
<td>Return the handle of the current object</td>
</tr>
<tr>
<td><code>get</code></td>
<td>Query the value of an objects properties</td>
</tr>
<tr>
<td><code>set</code></td>
<td>Set the value of an objects properties</td>
</tr>
</tbody>
</table>

For More Information See the “MATLAB Function Reference” in Help for a description of each of these functions.
Setting Object Properties

All object properties have default values. However, you may find it useful to change the settings of some properties to customize your graph. There are two ways to set object properties:

• Specify values for properties when you create the object.
• Set the property value on an object that already exists.

Setting Properties from Plotting Commands

You can specify object property values as arguments to object creation functions as well as with plotting functions, such as plot, mesh, and surf.

For example, plotting commands that create lines or surfaces enable you to specify property name/property value pairs as arguments. The command

\[\text{plot}(x, y, 'LineWidth', 1.5) \]

plots the data in the variables \(x \) and \(y \) using lines having a LineWidth property set to 1.5 points (one point = 1/72 inch). You can set any line object property this way.

Setting Properties of Existing Objects

To modify the property values of existing objects, you can use the set command or, if plot editing mode is enabled, the Property Editor. The Property Editor provides a graphical user interface to many object properties. This section describes how to use the set command. See “Using the Property Editor” on page 5-16 for more information.

Many plotting commands can return the handles of the objects created so you can modify the objects using the set command. For example, these statements plot a five-by-five matrix (creating five lines, one per column) and then set the Marker to a square and the MarkerFaceColor to green.

\[h = \text{plot}(\text{magic}(5)); \]
\[\text{set}(h, 'Marker', 's', 'MarkerFaceColor', 'g') \]
In this case, \(h \) is a vector containing five handles, one for each of the five lines in the plot. The `set` statement sets the `Marker` and `MarkerFaceColor` properties of all lines to the same values.

Setting Multiple Property Values

If you want to set the properties of each line to a different value, you can use cell arrays to store all the data and pass it to the `set` command. For example, create a plot and save the line handles.

```matlab
h = plot(magic(5));
```

Suppose you want to add different markers to each line and color the marker’s face color to the same color as the line. You need to define two cell arrays – one containing the property names and the other containing the desired values of the properties.

The `prop_name` cell array contains two elements.

```matlab
prop_name(1) = {'Marker'};  
prop_name(2) = {'MarkerFaceColor'};
```

The `prop_values` cell array contains 10 values – five values for the `Marker` property and five values for the `MarkerFaceColor` property. Notice that `prop_values` is a two-dimensional cell array. The first dimension indicates which handle in \(h \) the values apply to and the second dimension indicates which property the value is assigned to.

```matlab
prop_values(1,1) = {'s'};  
prop_values(1,2) = {get(h(1),'Color')};  
prop_values(2,1) = {'d'};  
prop_values(2,2) = {get(h(2),'Color')};  
prop_values(3,1) = {'o'};  
prop_values(3,2) = {get(h(3),'Color')};  
prop_values(4,1) = {'p'};  
prop_values(4,2) = {get(h(4),'Color')};  
prop_values(5,1) = {'h'};  
prop_values(5,2) = {get(h(5),'Color')};
```

The `MarkerFaceColor` is always assigned the value of the corresponding line’s color (obtained by getting the line’s `Color` property with the `get` command).
After defining the cell arrays, call `set` to specify the new property values.

\[\text{set}(h, \text{prop	extunderscore name}, \text{prop	extunderscore values}) \]

For More Information See “Structures and Cell Arrays” in Help for information on cell arrays.

Finding the Handles of Existing Objects

The `findobj` command enables you to obtain the handles of graphics objects by searching for objects with particular property values. With `findobj` you can specify the value of any combination of properties, which makes it easy to pick one object out of many. For example, you may want to find the blue line with square marker having blue face color.
You can also specify which figures or axes to search, if there is more than one. The following sections provide examples illustrating how to use `findobj`.

Finding All Objects of a Certain Type
Since all objects have a `Type` property that identifies the type of object, you can find the handles of all occurrences of a particular type of object. For example,

```matlab
h = findobj('Type','line');
```

finds the handles of all line objects.

Finding Objects with a Particular Property
You can specify multiple properties to narrow the search. For example,

```matlab
h = findobj('Type','line','Color','r','LineStyle',':');
```

finds the handles of all red, dotted lines.

Limiting the Scope of the Search
You can specify the starting point in the object hierarchy by passing the handle of the starting figure or axes as the first argument. For example,

```matlab
h = findobj(gca,'Type','text','String','\pi/2');
```

finds the string $\pi/2$ only within the current axes.

Using `findobj` as an Argument
Since `findobj` returns the handles it finds, you can use it in place of the handle argument. For example,

```matlab
set(findobj('Type','line','Color','red'),'LineStyle',':');
```

finds all red lines and sets their line style to dotted.

For More Information See “Accessing Object Handles” in Help for more information.
Graphics User Interfaces

Here is a simple example illustrating how to use Handle Graphics to build user interfaces. The statement

```matlab
b = uicontrol('Style','pushbutton', ...
    'Units','normalized', ...   
    'Position',[.5 .5 .2 .1], ... 
    'String','click here');
```

creates a pushbutton in the center of a figure window and returns a handle to the new object. But, so far, clicking on the button does nothing. The statement

```matlab
s = 'set(b,''Position'',[.8*rand .9*rand .2 .1])';
```

creates a string containing a command that alters the pushbutton’s position. Repeated execution of

```matlab
eval(s)
```

moves the button to random positions. Finally,

```matlab
set(b,'Callback',s)
```

installs s as the button’s callback action, so every time you click on the button, it moves to a new position.

Graphical User Interface Design Tools

MATLAB includes a set of layout tools that simplify the process of creating graphical user interfaces (GUIs). These tools include:

- Layout Editor – add and arrange objects in the figure window.
- Alignment Tool – align objects with respect to each other.
- Property Inspector – inspect and set property values.
- Object Browser – observe a hierarchical list of the Handle Graphics objects in the current MATLAB session.
- Menu Editor – create window menus and context menus.

Access these tools from the Layout Editor. To start the Layout Editor, use the `guide` command. For example,

```matlab
guide
```
displays an empty layout.

To load an existing GUI for editing, type (the `.fig` is not required)

```
guide mygui.fig
```

or use **Open...** from the **File** menu on the Layout Editor.

For More Information See “Creating Graphical User Interfaces” for more information.
Animations

MATLAB provides two ways of generating moving, animated graphics:

• Continually erase and then redraw the objects on the screen, making incremental changes with each redraw.
• Save a number of different pictures and then play them back as a movie.

Erase Mode Method
Using the EraseMode property is appropriate for long sequences of simple plots where the change from frame to frame is minimal. Here is an example showing simulated Brownian motion. Specify a number of points, such as

\[n = 20 \]

and a temperature or velocity, such as

\[s = .02 \]

The best values for these two parameters depend upon the speed of your particular computer. Generate random points with \((x,y)\) coordinates between \(-1/2\) and \(+1/2\).

\[x = \text{rand}(n,1) \cdot 0.5; \]
\[y = \text{rand}(n,1) \cdot 0.5; \]

Plot the points in a square with sides at -1 and +1. Save the handle for the vector of points and set its EraseMode to xor. This tells the MATLAB graphics system not to redraw the entire plot when the coordinates of one point are changed, but to restore the background color in the vicinity of the point using an “exclusive or” operation.

\[h = \text{plot}(x,y,'.'); \]
\[\text{axis([-1 1 -1 1])} \]
\[\text{axis square} \]
\[\text{grid off} \]
\[\text{set(h,'EraseMode','xor','MarkerSize',18)} \]

Now begin the animation. Here is an infinite while loop, which you can eventually exit by typing Ctrl+c. Each time through the loop, add a small amount of normally distributed random noise to the coordinates of the points.
Then, instead of creating an entirely new plot, simply change the `XData` and `YData` properties of the original plot.

```matlab
while 1
drawnow
x = x + s*randn(n,1);
y = y + s*randn(n,1);
set(h, 'XData', x, 'YData', y)
end
```

How long does it take for one of the points to get outside of the square? How long before all of the points are outside the square?

Creating Movies

If you increase the number of points in the Brownian motion example to something like `n = 300` and `s = .02`, the motion is no longer very fluid; it takes too much time to draw each time step. It becomes more effective to save a predetermined number of frames as bitmaps and to play them back as a movie.
First, decide on the number of frames, say

```matlab
nframes = 50;
```

Next, set up the first plot as before, except using the default `EraseMode` (`normal`).

```matlab
x = rand(n,1) - 0.5;
y = rand(n,1) - 0.5;
h = plot(x,y,'.');
set(h,'MarkerSize',18);
axis([-1 1 -1 1])
axis square
grid off
```

Generate the movie and use `getframe` to capture each frame.

```matlab
for k = 1:nframes
    x = x + s*randn(n,1);
y = y + s*randn(n,1);
set(h,'XData',x,'YData',y)
M(k) = getframe;
end
```

Finally, play the movie 30 times.

```matlab
movie(M,30)
```
Programming with MATLAB

Flow Control .. 6-2
Other Data Structures 6-7
Scripts and Functions 6-17
Demonstration Programs Included with MATLAB . . . 6-27
Flow Control

MATLAB has several flow control constructs:

- if statements
- switch statements
- for loops
- while loops
- continue statements
- break statements

For More Information See “Programming and Data Types” in Help for a complete discussion about programming in MATLAB.

if

The if statement evaluates a logical expression and executes a group of statements when the expression is true. The optional elseif and else keywords provide for the execution of alternate groups of statements. An end keyword, which matches the if, terminates the last group of statements. The groups of statements are delineated by the four keywords – no braces or brackets are involved.

MATLAB’s algorithm for generating a magic square of order n involves three different cases: when n is odd, when n is even but not divisible by 4, or when n is divisible by 4. This is described by

```
if rem(n,2) ~= 0
    M = odd_magic(n)
elseif rem(n,4) ~= 0
    M = single_even_magic(n)
else
    M = double_even_magic(n)
end
```

In this example, the three cases are mutually exclusive, but if they weren’t, the first true condition would be executed.
It is important to understand how relational operators and if statements work with matrices. When you want to check for equality between two variables, you might use

```matlab
if A == B, ...;
```

This is legal MATLAB code, and does what you expect when A and B are scalars. But when A and B are matrices, A == B does not test if they are equal, it tests where they are equal; the result is another matrix of 0's and 1's showing element-by-element equality. In fact, if A and B are not the same size, then A == B is an error.

The proper way to check for equality between two variables is to use the isequal function,

```matlab
if isequal(A,B), ...;
```

Here is another example to emphasize this point. If A and B are scalars, the following program will never reach the unexpected situation. But for most pairs of matrices, including our magic squares with interchanged columns, none of the matrix conditions A > B, A < B or A == B is true for all elements and so the else clause is executed.

```matlab
if A > B
    'greater'
el elseif A < B
    'less'
el elseif A == B
    'equal'
el else
    error('Unexpected situation')
end
```

Several functions are helpful for reducing the results of matrix comparisons to scalar conditions for use with if, including

```matlab
isequal
isempty
all
any
```
switch and case

The `switch` statement executes groups of statements based on the value of a variable or expression. The keywords `case` and `otherwise` delineate the groups. Only the first matching case is executed. There must always be an `end` to match the `switch`.

The logic of the magic squares algorithm can also be described by

```matlab
switch (rem(n, 4) == 0) + (rem(n, 2) == 0)
    case 0
        M = odd_magic(n)
    case 1
        M = single_even_magic(n)
    case 2
        M = double_even_magic(n)
    otherwise
        error('This is impossible')
end
```

Note Unlike the C language `switch` statement, MATLAB's `switch` does not fall through. If the first case statement is true, the other case statements do not execute. So, `break` statements are not required.

for

The `for` loop repeats a group of statements a fixed, predetermined number of times. A matching `end` delineates the statements.

```matlab
for n = 3:32
    r(n) = rank(magic(n));
end
r
```

The semicolon terminating the inner statement suppresses repeated printing, and the `r` after the loop displays the final result.
It is a good idea to indent the loops for readability, especially when they are nested.

```matlab
for i = 1:m
    for j = 1:n
        H(i,j) = 1/(i+j);
    end
end
```

while

The `while` loop repeats a group of statements an indefinite number of times under control of a logical condition. A matching `end` delineates the statements.

Here is a complete program, illustrating `while`, `if`, `else`, and `end`, that uses interval bisection to find a zero of a polynomial.

```matlab
a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
    x = (a+b)/2;
    fx = x^3-2*x-5;
    if sign(fx) == sign(fa)
        a = x; fa = fx;
    else
        b = x; fb = fx;
    end
end
x
```

The result is a root of the polynomial $x^3 - 2x - 5$, namely

```matlab
x =
    2.09455148154233
```

The cautions involving matrix comparisons that are discussed in the section on the `if` statement also apply to the `while` statement.

continue

The `continue` statement passes control to the next iteration of the `for` or `while` loop in which it appears, skipping any remaining statements in the body of the
loop. In nested loops, \texttt{continue} passes control to the next iteration of the \texttt{for} or \texttt{while} loop enclosing it.

The example below shows a \texttt{continue} loop that counts the lines of code in the file, \texttt{magic.m}, skipping all blank lines and comments. A \texttt{continue} statement is used to advance to the next line in \texttt{magic.m} without incrementing the count whenever a blank line or comment line is encountered.

```matlab
fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)
    line = fgetl(fid);
    if isempty(line) | strncmp(line,'%',1)
        continue
    end
    count = count + 1;
end
disp(sprintf('%d lines',count));
```

\textbf{break}

The \texttt{break} statement lets you exit early from a \texttt{for} or \texttt{while} loop. In nested loops, \texttt{break} exits from the innermost loop only.

Here is an improvement on the example from the previous section. Why is this use of \texttt{break} a good idea?

```matlab
a = 0; fa = -Inf;
b = 3; fb = Inf;
while b-a > eps*b
    x = (a+b)/2;
    fx = x^3 - 2*x - 5;
    if fx == 0
        break
    elseif sign(fx) == sign(fa)
        a = x; fa = fx;
    else
        b = x; fb = fx;
    end
end
x
```
Other Data Structures

This section introduces you to some other data structures in MATLAB, including:

- Multidimensional arrays
- Cell arrays
- Characters and text
- Structures

For More Information For a complete discussion of MATLAB’s data structures, see “Programming and Data Types” in Help.

Multidimensional Arrays
Multidimensional arrays in MATLAB are arrays with more than two subscripts. They can be created by calling `zeros`, `ones`, `rand`, or `randn` with more than two arguments. For example,

\[
R = \text{randn}(3, 4, 5);
\]

creates a 3-by-4-by-5 array with a total of 3x4x5 = 60 normally distributed random elements.

A three-dimensional array might represent three-dimensional physical data, say the temperature in a room, sampled on a rectangular grid. Or, it might represent a sequence of matrices, \(A^{(k)} \), or samples of a time-dependent matrix, \(A(t) \). In these latter cases, the \((i, j)\)th element of the \(k\)th matrix, or the \(t_k\)th matrix, is denoted by \(A(i, j, k) \).

MATLAB’s and Dürer’s versions of the magic square of order 4 differ by an interchange of two columns. Many different magic squares can be generated by interchanging columns. The statement

\[
p = \text{perms}(1:4);
\]
generates the $4! = 24$ permutations of $1:4$. The kth permutation is the row vector, $p(k,:)$. Then

```matlab
A = magic(4);
M = zeros(4,4,24);
for k = 1:24
    M(:,:,k) = A(:,p(k,:));
end
```

stores the sequence of 24 magic squares in a three-dimensional array, M. The size of M is
```
size(M)
```
```
ans =
  4   4  24
```

It turns out that the third matrix in the sequence is Dürer’s.
```
M(:, :, 3)
```
```
ans =
  16   3   2  13
     5  10  11   8
     9   6   7  12
     4  15  14   1
```
The statement

\[
\text{sum}(M, d)
\]

computes sums by varying the \(d\)th subscript. So

\[
\text{sum}(M, 1)
\]

is a 1-by-4-by-24 array containing 24 copies of the row vector

\[
\begin{bmatrix}
34 & 34 & 34 & 34
\end{bmatrix}
\]

and

\[
\text{sum}(M, 2)
\]

is a 4-by-1-by-24 array containing 24 copies of the column vector

\[
\begin{bmatrix}
34 \\
34 \\
34 \\
34
\end{bmatrix}
\]

Finally,

\[
S = \text{sum}(M, 3)
\]

adds the 24 matrices in the sequence. The result has size 4-by-4-by-1, so it looks like a 4-by-4 array.

\[
S =
\begin{bmatrix}
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204 \\
204 & 204 & 204 & 204
\end{bmatrix}
\]

Cell Arrays

Cell arrays in MATLAB are multidimensional arrays whose elements are copies of other arrays. A cell array of empty matrices can be created with the \texttt{cell} function. But, more often, cell arrays are created by enclosing a miscellaneous collection of things in curly braces, \(\{}\). The curly braces are also used with subscripts to access the contents of various cells. For example,

\[
C = \{A \text{ sum}(A) \prod(\prod(A))\}
\]
produces a 1-by-3 cell array. The three cells contain the magic square, the row vector of column sums, and the product of all its elements. When \(C \) is displayed, you see

\[
C = \\
[\text{4x4 double}] [\text{1x4 double}] [20922789888000]
\]

This is because the first two cells are too large to print in this limited space, but the third cell contains only a single number, 16!, so there is room to print it.

Here are two important points to remember. First, to retrieve the contents of one of the cells, use subscripts in curly braces. For example, \(C\{1\} \) retrieves the magic square and \(C\{3\} \) is 16!. Second, cell arrays contain copies of other arrays, not pointers to those arrays. If you subsequently change \(A \), nothing happens to \(C \).

Three-dimensional arrays can be used to store a sequence of matrices of the same size. Cell arrays can be used to store a sequence of matrices of different sizes. For example,

```matlab
M = cell(8,1);
for n = 1:8
    M{n} = magic(n);
end
M
```

produces a sequence of magic squares of different order.

\[
M = \\
[1] \\
[2x2 double] \\
[3x3 double] \\
[4x4 double] \\
[5x5 double] \\
[6x6 double] \\
[7x7 double] \\
[8x8 double]
\]
Other Data Structures

You can retrieve our old friend with

\[
\text{M\{4\}}
\]

Characters and Text

Enter text into MATLAB using single quotes. For example,

\[
s = 'Hello'
\]

The result is not the same kind of numeric matrix or array we have been dealing with up to now. It is a 1-by-5 character array.
Internally, the characters are stored as numbers, but not in floating-point format. The statement

\[a = \text{double}(s) \]

converts the character array to a numeric matrix containing floating-point representations of the ASCII codes for each character. The result is

\[a = \begin{bmatrix} 72 & 101 & 108 & 108 & 111 \end{bmatrix} \]

The statement

\[s = \text{char}(a) \]

reverses the conversion.

Converting numbers to characters makes it possible to investigate the various fonts available on your computer. The printable characters in the basic ASCII character set are represented by the integers \(32:127\). (The integers less than 32 represent nonprintable control characters.) These integers are arranged in an appropriate 6-by-16 array with

\[F = \text{reshape}(32:127,16,6)'; \]

The printable characters in the extended ASCII character set are represented by \(F+128\). When these integers are interpreted as characters, the result depends on the font currently being used. Type the statements

\[\text{char}(F) \]
\[\text{char}(F+128) \]

and then vary the font being used for the MATLAB Command Window. Select \textbf{Preferences} from the \textbf{File} menu. Be sure to try the \textbf{Symbol} and \textbf{Wingdings} fonts, if you have them on your computer. Here is one example of the kind of output you might obtain.
Concatenation with square brackets joins text variables together into larger strings. The statement

```matlab
h = [s, 'world']
```

joins the strings horizontally and produces

```matlab
h =
Hello world
```

The statement

```matlab
v = [s; 'world']
```

joins the strings vertically and produces

```matlab
v =
Hello
world
```

Note that a blank has to be inserted before the 'w' in h and that both words in v have to have the same length. The resulting arrays are both character arrays; h is 1-by-11 and v is 2-by-5.

To manipulate a body of text containing lines of different lengths, you have two choices - a padded character array or a cell array of strings. The `char` function accepts any number of lines, adds blanks to each line to make them all the same length, and forms a character array with each line in a separate row. For example,
S = char('A','rolling','stone','gathers','momentum. ')

produces a 5-by-9 character array.

S =
A
rolling
stone
gathers
momentum.

There are enough blanks in each of the first four rows of S to make all the rows the same length. Alternatively, you can store the text in a cell array. For example,

C = {'A';'rolling';'stone';'gathers';'momentum.'}

is a 5-by-1 cell array.

C =
'A'
'rolling'
'stone'
'gathers'
'momentum.'

You can convert a padded character array to a cell array of strings with

C = cellstr(S)

and reverse the process with

S = char(C)

Structures

Structures are multidimensional MATLAB arrays with elements accessed by textual field designators. For example,

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

creates a scalar structure with three fields.
Like everything else in MATLAB, structures are arrays, so you can insert additional elements. In this case, each element of the array is a structure with several fields. The fields can be added one at a time,

```matlab
S(2).name = 'Toni Miller';
S(2).score = 91;
S(2).grade = 'A-';
```

or, an entire element can be added with a single statement.

```matlab
S(3) = struct('name','Jerry Garcia',
    'score',70,'grade','C')
```

Now the structure is large enough that only a summary is printed.

```matlab
S =
    1x3 struct array with fields:
    name
    score
    grade
```

There are several ways to reassemble the various fields into other MATLAB arrays. They are all based on the notation of a comma separated list. If you type

```matlab
S.score
```

it is the same as typing

```matlab
S(1).score, S(2).score, S(3).score
```

This is a comma separated list. Without any other punctuation, it is not very useful. It assigns the three scores, one at a time, to the default variable `ans` and dutifully prints out the result of each assignment. But when you enclose the expression in square brackets,

```matlab
[S.score]
```

it is the same as

```matlab
[S(1).score, S(2).score, S(3).score]
```
which produces a numeric row vector containing all of the scores.

\[
\text{ans} = \\
83 \quad 91 \quad 70
\]

Similarly, typing

\[
\text{S.name}
\]

just assigns the names, one at time, to \text{ans}. But enclosing the expression in curly braces,

\[
\{\text{S.name}\}
\]

creates a 1-by-3 cell array containing the three names.

\[
\text{ans} = \\
'\text{'Ed Plum'}' \quad '\text{Toni Miller'}' \quad '\text{Jerry Garcia'}'
\]

And

\[
\text{char(S.name)}
\]

calls the \text{char} function with three arguments to create a character array from the \text{name} fields,

\[
\text{ans} = \\
\text{Ed Plum} \\
\text{Toni Miller} \\
\text{Jerry Garcia}
\]
Scripts and Functions

MATLAB is a powerful programming language as well as an interactive computational environment. Files that contain code in the MATLAB language are called M-files. You create M-files using a text editor, then use them as you would any other MATLAB function or command.

There are two kinds of M-files:

- Scripts, which do not accept input arguments or return output arguments. They operate on data in the workspace.
- Functions, which can accept input arguments and return output arguments. Internal variables are local to the function.

If you’re a new MATLAB programmer, just create the M-files that you want to try out in the current directory. As you develop more of your own M-files, you will want to organize them into other directories and personal toolboxes that you can add to MATLAB’s search path.

If you duplicate function names, MATLAB executes the one that occurs first in the search path.

To view the contents of an M-file, for example, *myfunction.m*, use

 type myfunction

Scripts

When you invoke a script, MATLAB simply executes the commands found in the file. Scripts can operate on existing data in the workspace, or they can create new data on which to operate. Although scripts do not return output arguments, any variables that they create remain in the workspace, to be used in subsequent computations. In addition, scripts can produce graphical output using functions like `plot`.

For example, create a file called *magicrank.m* that contains these MATLAB commands.

```matlab
% Investigate the rank of magic squares
r = zeros(1,32);
for n = 3:32
    r(n) = rank(magic(n));
end
```
The statement
\begin{verbatim}
 magicrank
\end{verbatim}
causes MATLAB to execute the commands, compute the rank of the first 30
magic squares, and plot a bar graph of the result. After execution of the file is
complete, the variables \(n \) and \(r \) remain in the workspace.

\textbf{Functions}

Functions are M-files that can accept input arguments and return output
arguments. The name of the M-file and of the function should be the same.
Functions operate on variables within their own workspace, separate from the
workspace you access at the MATLAB command prompt.

A good example is provided by \texttt{rank}. The M-file \texttt{rank.m} is available in the
directory

\begin{verbatim}
 toolbox/matlab/matfun
\end{verbatim}
You can see the file with

```
type rank
```

Here is the file.

```matlab
function r = rank(A,tol)
    % RANK Matrix rank.
    % RANK(A) provides an estimate of the number of linearly
    % independent rows or columns of a matrix A.
    % RANK(A,tol) is the number of singular values of A
    % that are larger than tol.
    % RANK(A) uses the default tol = max(size(A)) * norm(A) * eps.

    s = svd(A);
    if nargin==1
        tol = max(size(A)' ) * max(s) * eps;
    end
    r = sum(s > tol);
```

The first line of a function M-file starts with the keyword `function`. It gives the function name and order of arguments. In this case, there are up to two input arguments and one output argument.

The next several lines, up to the first blank or executable line, are comment lines that provide the help text. These lines are printed when you type

```
help rank
```

The first line of the help text is the H1 line, which MATLAB displays when you use the `lookfor` command or request `help` on a directory.

The rest of the file is the executable MATLAB code defining the function. The variables introduced in the body of the function, as well as the variables on the first line, `r`, `A` and `tol`, are all local to the function; they are separate from any variables in the MATLAB workspace.

This example illustrates one aspect of MATLAB functions that is not ordinarily found in other programming languages - a variable number of arguments. The `rank` function can be used in several different ways.

```matlab
rank(A)
r = rank(A)
r = rank(A,1.e-6)
```
Many M-files work this way. If no output argument is supplied, the result is stored in \texttt{ans}. If the second input argument is not supplied, the function computes a default value. Within the body of the function, two quantities named \texttt{nargin} and \texttt{nargout} are available which tell you the number of input and output arguments involved in each particular use of the function. The \texttt{rank} function uses \texttt{nargin}, but does not need to use \texttt{nargout}.

Global Variables

If you want more than one function to share a single copy of a variable, simply declare the variable as \texttt{global} in all the functions. Do the same thing at the command line if you want the base workspace to access the variable. The global declaration must occur before the variable is actually used in a function. Although it is not required, using capital letters for the names of global variables helps distinguish them from other variables. For example, create an M-file called \texttt{falling.m}.

```matlab
function h = falling(t)
global GRAVITY
h = 1/2*GRAVITY*t.^2;
```

Then interactively enter the statements

```matlab
global GRAVITY
GRAVITY = 32;
y = falling((0:.1:5)');
```

The two global statements make the value assigned to \texttt{GRAVITY} at the command prompt available inside the function. You can then modify \texttt{GRAVITY} interactively and obtain new solutions without editing any files.

Passing String Arguments to Functions

You can write MATLAB functions that accept string arguments without the parentheses and quotes. That is, MATLAB interprets

```matlab
foo a b c
```

as

```matlab
foo('a','b','c')
```
However, when using the unquoted form, MATLAB cannot return output arguments. For example,

```matlab
legend apples oranges
```

creates a legend on a plot using the strings `apples` and `oranges` as labels. If you want the `legend` command to return its output arguments, then you must use the quoted form.

```matlab
[legh, objh] = legend('apples', 'oranges');
```

In addition, you cannot use the unquoted form if any of the arguments are not strings.

Constructing String Arguments in Code

The quoted form enables you to construct string arguments within the code. The following example processes multiple data files, `August1.dat`, `August2.dat`, and so on. It uses the function `int2str`, which converts an integer to a character, to build the filename.

```matlab
for d = 1:31
    s = ['August' int2str(d) '.dat'];
    load(s)
    % Code to process the contents of the d-th file
end
```

A Cautionary Note

While the unquoted syntax is convenient, it can be used incorrectly without causing MATLAB to generate an error. For example, given a matrix `A`,

```matlab
A =
    0   -6  -1
    6    2  -16
   -5   20  -10
```

The `eig` command returns the eigenvalues of `A`.

```matlab
eig(A)
ans =
    -3.0710
    2.4645 + 17.6008i
    2.4645 - 17.6008i
The following statement is not allowed because \texttt{A} is not a string, however MATLAB does not generate an error.

\begin{verbatim}
  eig A
  ans =
       65
\end{verbatim}

MATLAB actually takes the eigenvalues of ASCII numeric equivalent of the letter \texttt{A} (which is the number 65).

**The eval Function**

The \texttt{eval} function works with text variables to implement a powerful text macro facility. The expression or statement

\begin{verbatim}
  eval(s)
\end{verbatim}

uses the MATLAB interpreter to evaluate the expression or execute the statement contained in the text string \texttt{s}.
The example of the previous section could also be done with the following code, although this would be somewhat less efficient because it involves the full interpreter, not just a function call.

```matlab
for d = 1:31
 s = ['load August' int2str(d) '.dat'];
 eval(s)
 % Process the contents of the d-th file
end
```

### Vectorization

To obtain the most speed out of MATLAB, it’s important to vectorize the algorithms in your M-files. Where other programming languages might use `for` or `DO` loops, MATLAB can use vector or matrix operations. A simple example involves creating a table of logarithms.

```matlab
x = .01;
for k = 1:1001
 y(k) = log10(x);
 x = x + .01;
end
```

A vectorized version of the same code is

```matlab
x = .01:.01:10;
y = log10(x);
```

For more complicated code, vectorization options are not always so obvious. When speed is important, however, you should always look for ways to vectorize your algorithms.

### Preallocation

If you can’t vectorize a piece of code, you can make your `for` loops go faster by preallocating any vectors or arrays in which output results are stored. For example, this code uses the function `zeros` to preallocate the vector created in the `for` loop. This makes the `for` loop execute significantly faster.

```matlab
r = zeros(32,1);
for n = 1:32
 r(n) = rank(magic(n));
end
```
Without the preallocation in the previous example, the MATLAB interpreter enlarges the `r` vector by one element each time through the loop. Vector preallocation eliminates this step and results in faster execution.

**Function Handles**
You can create a handle to any MATLAB function and then use that handle as a means of referencing the function. A function handle is typically passed in an argument list to other functions, which can then execute, or evaluate, the function using the handle.

Construct a function handle in MATLAB using the at sign, `@`, before the function name. The following example creates a function handle for the `sin` function and assigns it to the variable `fhandle`.

```matlab
fhandle = @sin;
```

Evaluate a function handle using the MATLAB `feval` function. The function `plot_fhandle`, shown below, receives a function handle and data, and then performs an evaluation of the function handle on that data using `feval`.

```matlab
function x = plot_fhandle(fhandle, data)
 plot(data, feval(fhandle, data))
```

When you call `plot_fhandle` with a handle to the `sin` function and the argument shown below, the resulting evaluation produces a sine wave plot.

```matlab
plot_fhandle(@sin, -pi:0.01:pi)
```

**Function Functions**
A class of functions, called “function functions,” works with nonlinear functions of a scalar variable. That is, one function works on another function. The function functions include:

- Zero finding
- Optimization
- Quadrature
- Ordinary differential equations
MATLAB represents the nonlinear function by a function M-file. For example, here is a simplified version of the function `humps` from the `matlab/demos` directory.

```matlab
function y = humps(x)
 y = 1./((x-.3).^2 + .01) + 1./((x-.9).^2 + .04) - 6;
```

Evaluate this function at a set of points in the interval $0 \leq x \leq 1$ with

```matlab
x = 0:.002:1;
y = humps(x);
```

Then plot the function with

```matlab
plot(x,y)
```

The graph shows that the function has a local minimum near $x = 0.6$. The function `fminsearch` finds the minimizer, the value of $x$ where the function takes on this minimum. The first argument to `fminsearch` is a function handle to the function being minimized and the second argument is a rough guess at the location of the minimum.
p = fminsearch(@humps,.5)
p =
0.6370

To evaluate the function at the minimizer,

humps(p)

ans =
11.2528

Numerical analysts use the terms quadrature and integration to distinguish between numerical approximation of definite integrals and numerical integration of ordinary differential equations. MATLAB’s quadrature routines are \texttt{quad} and \texttt{quadl}. The statement

\begin{verbatim}
Q = quadl(@humps,0,1)
\end{verbatim}

computes the area under the curve in the graph and produces

\begin{verbatim}
Q =
29.8583
\end{verbatim}

Finally, the graph shows that the function is never zero on this interval. So, if you search for a zero with

\begin{verbatim}
z = fzero(@humps,.5)
\end{verbatim}

you will find one outside of the interval

\begin{verbatim}
z =
-0.1316
\end{verbatim}
Demonstration Programs Included with MATLAB

MATLAB includes many demonstration programs that highlight various features and functions. For a complete list of the demos, at the command prompt type

```
help demos
```

To view a specific file, for example, `airfoil`, type

```
edit airfoil
```

To run a demonstration, type the filename at the command prompt. For example, to run the airfoil demonstration, type

```
airfoil
```

**Note** Many of the demonstrations use multiple windows and require you to press a key in the MATLAB Command Window to continue through the demonstration.

The following tables list some of the current demonstration programs that are available, organized into these categories:

- MATLAB Matrix Demonstration Programs
- MATLAB Numeric Demonstration Programs
- MATLAB Visualization Demonstration Programs
- MATLAB Language Demonstration Programs
- MATLAB Differential Equation Programs
- MATLAB Gallery Demonstration Programs
- MATLAB Game Demonstration Programs
- MATLAB Miscellaneous Demonstration Programs
- MATLAB Helper Functions Demonstration Programs
### MATLAB Matrix Demonstration Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>airfoil</code></td>
<td>Graphical demonstration of sparse matrix from NASA airfoil.</td>
</tr>
<tr>
<td><code>buckydem</code></td>
<td>Connectivity graph of the Buckminster Fuller geodesic dome.</td>
</tr>
<tr>
<td><code>delsqdemo</code></td>
<td>Finite difference Laplacian on various domains.</td>
</tr>
<tr>
<td><code>eigmovie</code></td>
<td>Symmetric eigenvalue movie.</td>
</tr>
<tr>
<td><code>eigshow</code></td>
<td>Graphical demonstration of matrix eigenvalues.</td>
</tr>
<tr>
<td><code>intro</code></td>
<td>Introduction to basic matrix operations in MATLAB.</td>
</tr>
<tr>
<td><code>inverter</code></td>
<td>Demonstration of the inversion of a large matrix.</td>
</tr>
<tr>
<td><code>matmanip</code></td>
<td>Introduction to matrix manipulation.</td>
</tr>
<tr>
<td><code>rrefmovie</code></td>
<td>Computation of reduced row echelon form.</td>
</tr>
<tr>
<td><code>sepdemo</code></td>
<td>Separators for a finite element mesh.</td>
</tr>
<tr>
<td><code>sparsity</code></td>
<td>Demonstration of the effect of sparsity orderings.</td>
</tr>
<tr>
<td><code>svdshow</code></td>
<td>Graphical demonstration of matrix singular values.</td>
</tr>
</tbody>
</table>

### MATLAB Numeric Demonstration Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bench</code></td>
<td>MATLAB benchmark.</td>
</tr>
<tr>
<td><code>e2pi</code></td>
<td>Two-dimensional, visual solution to the problem “Which is greater, $e^{\pi}$ or $\pi^e$?”</td>
</tr>
<tr>
<td><code>fftdemo</code></td>
<td>Use of the FFT function for spectral analysis.</td>
</tr>
<tr>
<td><code>fitdemo</code></td>
<td>Nonlinear curve fit with simplex algorithm.</td>
</tr>
<tr>
<td><code>fplotdemo</code></td>
<td>Demonstration of plotting a function.</td>
</tr>
</tbody>
</table>
### MATLAB Numeric Demonstration Programs (Continued)

<table>
<thead>
<tr>
<th>funfuns</th>
<th>Demonstration of functions operating on other functions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lotkadem</td>
<td>Example of ordinary differential equation solution.</td>
</tr>
<tr>
<td>quaddemo</td>
<td>Adaptive quadrature.</td>
</tr>
<tr>
<td>qhulldemo</td>
<td>Tessellation and interpolation of scattered data.</td>
</tr>
<tr>
<td>quake</td>
<td>Loma Prieta earthquake.</td>
</tr>
<tr>
<td>spline2d</td>
<td>Demonstration of <code>ginput</code> and <code>spline</code> in two dimensions.</td>
</tr>
<tr>
<td>sunspots</td>
<td>Demonstration of the fast Fourier transform (FFT) function in MATLAB used to analyze the variations in sunspot activity.</td>
</tr>
<tr>
<td>zerodemo</td>
<td>Zero finding with <code>fzero</code>.</td>
</tr>
</tbody>
</table>

### MATLAB Visualization Demonstration Programs

<table>
<thead>
<tr>
<th>colormap</th>
<th>Demonstration of adding a colormap to the current figure.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cplxdemo</td>
<td>Maps of functions of a complex variable.</td>
</tr>
<tr>
<td>earthmap</td>
<td>Graphical demonstrations of earth's topography.</td>
</tr>
<tr>
<td>graf2d</td>
<td>Two-dimensional XY plots in MATLAB.</td>
</tr>
<tr>
<td>graf2d2</td>
<td>Three-dimensional XYZ plots in MATLAB.</td>
</tr>
<tr>
<td>grafcplx</td>
<td>Demonstration of complex function plots in MATLAB.</td>
</tr>
<tr>
<td>imagedemo</td>
<td>Demonstration of MATLAB's image capability.</td>
</tr>
<tr>
<td>imageext</td>
<td>Demonstration of changing and rotating image colormaps.</td>
</tr>
</tbody>
</table>
### MATLAB Visualization Demonstration Programs (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lorenz</td>
<td>Graphical demonstration of the orbit around the Lorenz chaotic attractor.</td>
</tr>
<tr>
<td>penny</td>
<td>Several views of the penny data.</td>
</tr>
<tr>
<td>vibes</td>
<td>Vibrating L-shaped membrane movie.</td>
</tr>
<tr>
<td>xfourier</td>
<td>Graphical demonstration of Fourier series expansion.</td>
</tr>
<tr>
<td>xpklein</td>
<td>Klein bottle demo.</td>
</tr>
<tr>
<td>xpsound</td>
<td>Demonstration of MATLAB's sound capability.</td>
</tr>
</tbody>
</table>

### MATLAB Language Demonstration Programs

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>graf3d</td>
<td>Demonstration of Handle Graphics for surface plots.</td>
</tr>
<tr>
<td>hndlaxis</td>
<td>Demonstration of Handle Graphics for axes.</td>
</tr>
<tr>
<td>hndlgraf</td>
<td>Demonstration of Handle Graphics for line plots.</td>
</tr>
<tr>
<td>xplang</td>
<td>Introduction to the MATLAB language.</td>
</tr>
</tbody>
</table>

### MATLAB Differential Equation Programs

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>amp1dae</td>
<td>Stiff DAE from an electrical circuit.</td>
</tr>
<tr>
<td>ballode</td>
<td>Equations of motion for a bouncing ball used by BALLDEMO.</td>
</tr>
<tr>
<td>brussode</td>
<td>Stiff problem, modelling a chemical reaction (Brusselator).</td>
</tr>
<tr>
<td>burgersode</td>
<td>Burger's equation solved using a moving mesh technique.</td>
</tr>
<tr>
<td>fem1ode</td>
<td>Stiff problem with a time-dependent mass matrix.</td>
</tr>
<tr>
<td>fem2ode</td>
<td>Stiff problem with a time-independent mass matrix.</td>
</tr>
</tbody>
</table>
### MATLAB Differential Equation Programs (Continued)

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hb1dae</td>
<td>Stiff DAE from a conservation law.</td>
</tr>
<tr>
<td>hb1ode</td>
<td>Stiff problem 1 of Hindmarsh and Byrne.</td>
</tr>
<tr>
<td>hb3ode</td>
<td>Stiff problem 3 of Hindmarsh and Byrne.</td>
</tr>
<tr>
<td>mat4bvp</td>
<td>Find the fourth eigenvalue of the Mathieu’s equation.</td>
</tr>
<tr>
<td>odedemo</td>
<td>Demonstration of the ODE suite integrators.</td>
</tr>
<tr>
<td>odeexamples</td>
<td>Browse the MATLAB ODE/DAE/BVP/PDE examples.</td>
</tr>
<tr>
<td>orbitode</td>
<td>Restricted 3 body problem used by ORBITDEMO.</td>
</tr>
<tr>
<td>pdex1</td>
<td>Example 1 for PDEPE.</td>
</tr>
<tr>
<td>pdex2</td>
<td>Example 2 for PDEPE.</td>
</tr>
<tr>
<td>pdex3</td>
<td>Example 3 for PDEPE.</td>
</tr>
<tr>
<td>pdex4</td>
<td>Example 4 for PDEPE.</td>
</tr>
<tr>
<td>rigidode</td>
<td>Euler equations of a rigid body without external forces.</td>
</tr>
<tr>
<td>shockbvp</td>
<td>The solution has a shock layer near x = 0.</td>
</tr>
<tr>
<td>twobvp</td>
<td>BVP that has exactly two solutions.</td>
</tr>
<tr>
<td>vdpode</td>
<td>Parameterizable van der Pol equation (stiff for large $\mu$).</td>
</tr>
</tbody>
</table>

### MATLAB Gallery Demonstration Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cruller</td>
<td>Graphical demonstration of a cruller.</td>
</tr>
<tr>
<td>klein1</td>
<td>Graphical demonstration of a Klein bottle.</td>
</tr>
<tr>
<td>knot</td>
<td>Tube surrounding a three-dimensional knot.</td>
</tr>
<tr>
<td>logo</td>
<td>Graphical demonstration of the MATLAB L-shaped membrane logo.</td>
</tr>
</tbody>
</table>
### MATLAB Gallery Demonstration Programs (Continued)

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>modes</code></td>
<td>Graphical demonstration of 12 modes of the L-shaped membrane.</td>
</tr>
<tr>
<td><code>quivdemo</code></td>
<td>Graphical demonstration of the quiver function.</td>
</tr>
<tr>
<td><code>spharm2</code></td>
<td>Graphical demonstration of spherical surface harmonic.</td>
</tr>
<tr>
<td><code>tori4</code></td>
<td>Graphical demonstration of four-linked, unknotted tori.</td>
</tr>
</tbody>
</table>

### MATLAB Game Demonstration Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fifteen</code></td>
<td>Sliding puzzle.</td>
</tr>
<tr>
<td><code>life</code></td>
<td>Conway’s Game of Life.</td>
</tr>
<tr>
<td><code>soma</code></td>
<td>Soma cube.</td>
</tr>
<tr>
<td><code>xpbombs</code></td>
<td>Minesweeper game.</td>
</tr>
</tbody>
</table>

### MATLAB Miscellaneous Demonstration Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>chaingui</code></td>
<td>Matrix chain multiplication optimization.</td>
</tr>
<tr>
<td><code>codec</code></td>
<td>Alphabet transposition coder/decoder.</td>
</tr>
<tr>
<td><code>crulspin</code></td>
<td>Spinning cruller movie.</td>
</tr>
<tr>
<td><code>logospin</code></td>
<td>Movie of the MathWorks logo spinning.</td>
</tr>
<tr>
<td><code>makevase</code></td>
<td>Demonstration of a surface of revolution.</td>
</tr>
<tr>
<td><code>quatdemo</code></td>
<td>Quaternion rotation.</td>
</tr>
<tr>
<td><code>spinner</code></td>
<td>Colorful lines spinning through space.</td>
</tr>
<tr>
<td><code>travel</code></td>
<td>Traveling salesman problem.</td>
</tr>
<tr>
<td><code>truss</code></td>
<td>Animation of a bending bridge truss.</td>
</tr>
</tbody>
</table>
### MATLAB Miscellaneous Demonstration Programs (Continued)

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wrldtrv</td>
<td>Great circle flight routes around the globe.</td>
</tr>
<tr>
<td>xphide</td>
<td>Visual perception of objects in motion.</td>
</tr>
<tr>
<td>xpquad</td>
<td>Superquadrics plotting demonstration.</td>
</tr>
</tbody>
</table>

### MATLAB Helper Functions Demonstration Programs

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bucky</td>
<td>Graph of the Buckminster Fuller geodesic dome.</td>
</tr>
<tr>
<td>cmdlnbgn</td>
<td>Set up for command line demos.</td>
</tr>
<tr>
<td>cmdlnend</td>
<td>Clean up after command line demos.</td>
</tr>
<tr>
<td>cmdlnwin</td>
<td>Demo gateway routine for running command line demos.</td>
</tr>
<tr>
<td>finddemo</td>
<td>Command that finds available demos for individual toolboxes.</td>
</tr>
<tr>
<td>helpfun</td>
<td>Utility function for displaying help text conveniently.</td>
</tr>
<tr>
<td>membrane</td>
<td>The MathWorks logo.</td>
</tr>
<tr>
<td>peaks</td>
<td>Sample function of two variables.</td>
</tr>
<tr>
<td>pltmat</td>
<td>Command that displays a matrix in a figure window.</td>
</tr>
</tbody>
</table>

### Getting More Information

The MathWorks Web site ([www.mathworks.com](http://www.mathworks.com)) contains numerous M-files that have been written by users and MathWorks staff. These are accessible by selecting **Downloads**. Also, **Technical Notes**, which is accessible from our Technical Support Web site ([www.mathworks.com/support](http://www.mathworks.com/support)), contains numerous examples on graphics, mathematics, API, Simulink, and others.
Symbolic Math Toolbox

Introduction .............................................. 7-2
Getting Help ............................................. 7-4
Getting Started ........................................ 7-5
Calculus ..................................................... 7-16
Simplifications and Substitutions ................. 7-43
Variable-Precision Arithmetic ....................... 7-58
Linear Algebra .......................................... 7-63
Solving Equations ...................................... 7-86
Introduction

The Symbolic Math Toolbox incorporates symbolic computation into MATLAB’s numeric environment. This toolbox supplements MATLAB’s numeric and graphical facilities with several other types of mathematical computation.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Covers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculus</td>
<td>Differentiation, integration, limits, summation, and Taylor series</td>
</tr>
<tr>
<td>Linear Algebra</td>
<td>Inverses, determinants, eigenvalues, singular value decomposition, and canonical forms of symbolic matrices</td>
</tr>
<tr>
<td>Simplification</td>
<td>Methods of simplifying algebraic expressions</td>
</tr>
<tr>
<td>Solution of Equations</td>
<td>Symbolic and numerical solutions to algebraic and differential equations</td>
</tr>
<tr>
<td>Transforms</td>
<td>Fourier, Laplace, z-transform, and corresponding inverse transforms</td>
</tr>
<tr>
<td>Variable-Precision Arithmetic</td>
<td>Numerical evaluation of mathematical expressions to any specified accuracy</td>
</tr>
</tbody>
</table>

The computational engine underlying the toolboxes is the kernel of Maple, a system developed primarily at the University of Waterloo, Canada, and, more recently, at the Eidgenössische Technische Hochschule, Zürich, Switzerland. Maple is marketed and supported by Waterloo Maple, Inc.

This version of the Symbolic Math Toolbox is designed to work with MATLAB 6 and Maple V Release 5.

The Symbolic Math Toolbox is a collection of more than one-hundred MATLAB functions that provide access to the Maple kernel using a syntax and style that is a natural extension of the MATLAB language. The toolbox also allows you to access functions in Maple’s linear algebra package. With this toolbox, you can write your own M-files to access Maple functions and the Maple workspace.
The following sections of this tutorial provide explanation and examples on how to use the toolbox.

<table>
<thead>
<tr>
<th>Section</th>
<th>Covers</th>
</tr>
</thead>
<tbody>
<tr>
<td>“Getting Help”</td>
<td>How to get online help for Symbolic Math Toolbox functions</td>
</tr>
<tr>
<td>“Getting Started”</td>
<td>Basic symbolic math operations</td>
</tr>
<tr>
<td>“Calculus”</td>
<td>How to differentiate and integrate symbolic expressions</td>
</tr>
<tr>
<td>“Simplifications and Substitutions”</td>
<td>How to simplify and substitute values into expressions</td>
</tr>
<tr>
<td>“Variable-Precision Arithmetic”</td>
<td>How to control the precision of computations</td>
</tr>
<tr>
<td>“Linear Algebra”</td>
<td>Examples using the toolbox functions</td>
</tr>
<tr>
<td>“Solving Equations”</td>
<td>How to solve symbolic equations</td>
</tr>
</tbody>
</table>

For More Information  You can access complete reference information for the Symbolic Math Toolbox functions from Help. Also, you can print the PDF version of the complete Symbolic Math Toolbox User’s Guide (tutorial and reference information) from the Symbolic Math Toolbox roadmap in Help.
Getting Help

There are several ways to find information on using Symbolic Math Toolbox functions. One, of course, is to read this chapter! Another is to use online Help, which contains tutorials and reference information for all the functions. You can also use MATLAB’s command line help system. Generally, you can obtain help on MATLAB functions simply by typing

```
help function
```

where `function` is the name of the MATLAB function for which you need help. This is not sufficient, however, for some Symbolic Math Toolbox functions. The reason? The Symbolic Math Toolbox “overloads” many of MATLAB’s numeric functions. That is, it provides symbolic-specific implementations of the functions, using the same function name. To obtain help for the symbolic version of an overloaded function, type

```
help sym/function
```

where `function` is the overloaded function’s name. For example, to obtain help on the symbolic version of the overloaded function, `diff`, type

```
help sym/diff
```

To obtain information on the numeric version, on the other hand, simply type

```
help diff
```

How can you tell whether a function is overloaded? The help for the numeric version tells you so. For example, the help for the `diff` function contains the section

```
Overloaded methods
 help char/diff.m
 help sym/diff.m
```

This tells you that there are two other `diff` commands that operate on expressions of class `char` and class `sym`, respectively. See the next section for information on class `sym`. For more information on overloaded commands, see “Overloading Operators and Functions” in Using MATLAB, which is accessible from Help.
Getting Started

This section describes how to create and use symbolic objects. It also describes the default symbolic variable. If you are familiar with version 1 of the Symbolic Math Toolbox, please note that version 2 uses substantially different and simpler syntax.

To get a quick online introduction to the Symbolic Math Toolbox, type `demos` at the MATLAB command line. MATLAB displays the MATLAB Demos dialog box. Select Symbolic Math (in the left list box) and then Introduction (in the right list box).

Symbolic Objects

The Symbolic Math Toolbox defines a new MATLAB data type called a symbolic object or `sym` (for more information on data types, the MATLAB topic “Programming and Data Types” in Using MATLAB). Internally, a symbolic object is a data structure that stores a string representation of the symbol. The Symbolic Math Toolbox uses symbolic objects to represent symbolic variables, expressions, and matrices.
Creating Symbolic Variables and Expressions

The `sym` command lets you construct symbolic variables and expressions. For example, the commands

```matlab
x = sym('x')
a = sym('alpha')
```

create a symbolic variable `x` that prints as `x` and a symbolic variable `a` that prints as `alpha`.

Suppose you want to use a symbolic variable to represent the golden ratio

\[ \rho = \frac{1 + \sqrt{5}}{2} \]

The command

```matlab
rho = sym('(1 + sqrt(5))/2')
```

achieves this goal. Now you can perform various mathematical operations on `rho`. For example,

```matlab
f = rho^2 - rho - 1
```

returns

```matlab
f =
(1/2+1/2*5^(1/2))^2-3/2-1/2*5^(1/2)
```

Then

```matlab
simplify(f)
```

returns

```matlab
0
```

Now suppose you want to study the quadratic function \( f = ax^2 + bx + c \). The statement

```matlab
f = sym('a*x^2 + b*x + c')
```

assigns the symbolic expression \( ax^2 + bx + c \) to the variable `f`. Observe that in this case, the Symbolic Math Toolbox does not create variables corresponding to the terms of the expression, `a`, `b`, `c`, and `x`. To perform symbolic math
operations (e.g., integration, differentiation, substitution, etc.) on \( f \), you need to create the variables explicitly. You can do this by typing

\[
\begin{align*}
    a &= \text{sym}'a' \\
    b &= \text{sym}'b' \\
    c &= \text{sym}'c' \\
    x &= \text{sym}'x'
\end{align*}
\]

or simply

\[
\text{syms } a \ b \ c \ x
\]

In general, you can use \texttt{sym} or \texttt{syms} to create symbolic variables. We recommend you use \texttt{syms} because it requires less typing.

### Symbolic and Numeric Conversions

Consider the ordinary MATLAB quantity

\[
t = 0.1
\]

The \texttt{sym} function has four options for returning a symbolic representation of the numeric value stored in \( t \). The \('f'\) option

\[
\text{sym}(t, 'f')
\]

returns a symbolic floating-point representation

\[
'1.99999999999999a' * 2^(-4)
\]

The \('r'\) option

\[
\text{sym}(t, 'r')
\]

returns the rational form

\[
1/10
\]

This is the default setting for \texttt{sym}. That is, calling \texttt{sym} without a second argument is the same as using \texttt{sym} with the \('r'\) option.

\[
\text{sym}(t)
\]

\[
\text{ans} = \\
1/10
\]
The third option 'e' returns the rational form of \( t \) plus the difference between the theoretical rational expression for \( t \) and its actual (machine) floating-point value in terms of \( \text{eps} \) (the floating-point relative accuracy).

\[
\text{sym}(t, 'e')
\]

\[
\text{ans} = 1/10 + \text{eps}/40
\]

The fourth option 'd' returns the decimal expansion of \( t \) up to the number of significant digits specified by \text{digits}.

\[
\text{sym}(t, 'd')
\]

\[
\text{ans} = \text{.10000000000000000555111512312578}
\]

The default value of \text{digits} is 32 (hence, \text{sym}(t, 'd') returns a number with 32 significant digits), but if you prefer a shorter representation, use the \text{digits} command as follows.

\[
\text{digits}(7)
\]
\[
\text{sym}(t, 'd')
\]

\[
\text{ans} = \text{.1000000}
\]

A particularly effective use of \text{sym} is to convert a matrix from numeric to symbolic form. The command

\[
A = \text{hilb}(3)
\]

generates the 3-by-3 Hilbert matrix.

\[
A =
\begin{bmatrix}
1.0000 & 0.5000 & 0.3333 \\
0.5000 & 0.3333 & 0.2500 \\
0.3333 & 0.2500 & 0.2000
\end{bmatrix}
\]

By applying \text{sym} to \( A \)

\[
A = \text{sym}(A)
\]
you can obtain the (infinitely precise) symbolic form of the 3-by-3 Hilbert matrix.

\[
A = \\
\begin{bmatrix}
1, & 1/2, & 1/3 \\
1/2, & 1/3, & 1/4 \\
1/3, & 1/4, & 1/5 \\
\end{bmatrix}
\]

**Constructing Real and Complex Variables**

The `sym` command allows you to specify the mathematical properties of symbolic variables by using the `'real'` option. That is, the statements

\[
\begin{align*}
\text{x} &= \text{sym}('x', 'real'); \\
\text{y} &= \text{sym}('y', 'real');
\end{align*}
\]

or more efficiently

\[
\begin{align*}
\text{syms x y real} \\
\text{z} &= \text{x} + \text{i*y}
\end{align*}
\]

create symbolic variables \(x\) and \(y\) that have the added mathematical property of being real variables. Specifically this means that the expression

\[
\text{f} = \text{x}^2 + \text{y}^2
\]

is strictly nonnegative. Hence, \(z\) is a (formal) complex variable and can be manipulated as such. Thus, the commands

\[
\text{conj(x), conj(z), expand(z*conj(z))}
\]

return the complex conjugates of the variables

\[
\text{x, x-i*y, x^2+y^2}
\]

The `conj` command is the complex conjugate operator for the toolbox. If \(\text{conj(x)} == \text{x}\) returns 1, then \(x\) is a real variable.

To clear \(x\) of its “real” property, you must type

\[
\text{syms x unreal}
\]

or

\[
\text{x} = \text{sym}('x', 'unreal')
\]
The command

\texttt{clear x}

does not make \texttt{x} a nonreal variable.

**Creating Abstract Functions**

If you want to create an abstract (i.e., indeterminant) function \( f(x) \), type

\begin{verbatim}
    f = sym('f(x)')
\end{verbatim}

Then \( f \) acts like \( f(x) \) and can be manipulated by the toolbox commands. To construct the first difference ratio, for example, type

\begin{verbatim}
    df = (subs(f,'x','x+h') - f)' / h
\end{verbatim}

or

\begin{verbatim}
    syms x h
    df = (subs(f,x,x+h)-f)/h
\end{verbatim}

which returns

\begin{verbatim}
    df =
    (f(x+h)-f(x))/h
\end{verbatim}

This application of \texttt{sym} is useful when computing Fourier, Laplace, and \( z \)-transforms.

**Example: Creating a Symbolic Matrix**

A circulant matrix has the property that each row is obtained from the previous one by cyclically permuting the entries one step forward. We create the circulant matrix \( A \) whose elements are \( a \), \( b \), and \( c \), using the commands

\begin{verbatim}
    syms a b c
    A = [a b c; b c a; c a b]
\end{verbatim}

which return

\begin{verbatim}
    A =
    [ a, b, c ]
    [ b, c, a ]
    [ c, a, b ]
\end{verbatim}
Since A is circulant, the sum over each row and column is the same. Let’s check this for the first row and second column. The command

\[ \text{sum}(A(1,:)) \]

returns

\[ \text{ans} = \]
\[ a+b+c \]

The command

\[ \text{sum}(A(1,:)) == \text{sum}(A(:,2)) \% \text{This is a logical test}. \]

returns

\[ \text{ans} = \]
\[ 1 \]

Now replace the (2,3) entry of A with beta and the variable b with alpha. The commands

\[ \text{syms alpha beta;} \]
\[ A(2,3) = \text{beta}; \]
\[ A = \text{subs}(A, b, \text{alpha}) \]

return

\[ A = \]
\[ \begin{bmatrix}
    a & alpha & c \\
    alpha & c & beta \\
    c & a & alpha \\
\end{bmatrix} \]

From this example, you can see that using symbolic objects is very similar to using regular MATLAB numeric objects.

**The Default Symbolic Variable**

When manipulating mathematical functions, the choice of the independent variable is often clear from context. For example, consider the expressions in the table below.
If we ask for the derivatives of these expressions, without specifying the independent variable, then by mathematical convention we obtain \( f' = nx^n \), \( g' = a \cos(at + b) \), and \( h' = J_v(z) - J_{v+1}(z) \). Let's assume that the independent variables in these three expressions are \( x \), \( t \), and \( z \), respectively. The other symbols, \( n \), \( a \), \( b \), and \( v \), are usually regarded as “constants” or “parameters.” If, however, we wanted to differentiate the first expression with respect to \( n \), for example, we could write

\[
\frac{d}{dn} f(x) \quad \text{or} \quad \frac{d}{dn} x^n
\]

to get \( nx^n \ln x \).

By mathematical convention, independent variables are often lower-case letters found near the end of the Latin alphabet (e.g., \( x \), \( y \), or \( z \)). This is the idea behind \texttt{findsym}, a utility function in the toolbox used to determine default symbolic variables. Default symbolic variables are utilized by the calculus, simplification, equation-solving, and transform functions. To apply this utility to the example discussed above, type

\begin{verbatim}
syms a b n nu t x z
f = x^n; g = sin(a*t + b); h = besselj(nu,z);
\end{verbatim}

This creates the symbolic expressions \( f \), \( g \), and \( h \) to match the example. To differentiate these expressions, we use \texttt{diff}.

\begin{verbatim}
diff(f)
\end{verbatim}

returns

\begin{verbatim}
ans =
x^n*n/x
\end{verbatim}
See the section “Differentiation” for a more detailed discussion of differentiation and the `diff` command.

Here, as above, we did not specify the variable with respect to differentiation. How did the toolbox determine that we wanted to differentiate with respect to $x$? The answer is the `findsym` command

```
findsym(f, 1)
```

which returns

```
ans =
 x
```

Similarly, `findsym(g, 1)` and `findsym(h, 1)` return $t$ and $z$, respectively. Here the second argument of `findsym` denotes the number of symbolic variables we want to find in the symbolic object $f$, using the `findsym` rule (see below). The absence of a second argument in `findsym` results in a list of all symbolic variables in a given symbolic expression. We see this demonstrated below. The command

```
findsym(g)
```

returns the result

```
ans =
 a, b, t
```

**findsym Rule** The default symbolic variable in a symbolic expression is the letter that is closest to 'x' alphabetically. If there are two equally close, the letter later in the alphabet is chosen.
Here are some examples.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Variable Returned by findsym</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^n$</td>
<td>$x$</td>
</tr>
<tr>
<td>$\sin(a\cdot t + b)$</td>
<td>$t$</td>
</tr>
<tr>
<td>$\text{besselj}(\nu, z)$</td>
<td>$z$</td>
</tr>
<tr>
<td>$w\cdot y + v\cdot z$</td>
<td>$y$</td>
</tr>
<tr>
<td>$\exp(i\cdot \theta)$</td>
<td>$\theta$</td>
</tr>
<tr>
<td>$\log(\alpha\cdot x1)$</td>
<td>$x1$</td>
</tr>
<tr>
<td>$y\cdot(4+3i) + 6j$</td>
<td>$y$</td>
</tr>
<tr>
<td>$\sqrt{\pi\cdot \alpha}$</td>
<td>$\alpha$</td>
</tr>
</tbody>
</table>

**Creating Symbolic Math Functions**

There are two ways to create functions:

- Use symbolic expressions
- Create an M-file

**Using Symbolic Expressions**

The sequence of commands

```matlab
syms x y z
r = sqrt(x^2 + y^2 + z^2)
t = atan(y/x)
f = sin(x*y)/(x*y)
```

generates the symbolic expressions $r$, $t$, and $f$. You can use `diff`, `int`, `subs`, and other Symbolic Math Toolbox functions to manipulate such expressions.
Creating an M-File

M-files permit a more general use of functions. Suppose, for example, you want to create the \( \text{sinc} \) function \( \frac{\sin(x)}{x} \). To do this, create an M-file in the \@sym\ directory.

```matlab
function z = sinc(x)
%SINC The symbolic sinc function
% sin(x)/x. This function
% accepts a sym as the input argument.
if isequal(x,sym(0))
 z = 1;
else
 z = sin(x)/x;
end
```

You can extend such examples to functions of several variables. See the MATLAB topic “Programming and Data Types” in Using MATLAB for a more detailed discussion on object-oriented programming.
Calculus

The Symbolic Math Toolbox provides functions to do the basic operations of calculus; differentiation, limits, integration, summation, and Taylor series expansion. The following sections outline these functions.

Differentiation

Let's create a symbolic expression.

```matlab
syms a x
f = sin(a*x)
```

Then

```matlab
diff(f)
```
differentiates \( f \) with respect to its symbolic variable (in this case \( x \)), as determined by \texttt{findsym}.

```matlab
ans =
\cos(a*x)*a
```

To differentiate with respect to the variable \( a \), type

```matlab
diff(f, a)
```
which returns \( \frac{df}{da} \)

```matlab
ans =
\cos(a*x)*x
```

To calculate the second derivatives with respect to \( x \) and \( a \), respectively, type

```matlab
diff(f, 2)
```
or

```matlab
diff(f, x, 2)
```
which return

```matlab
ans =
-\sin(a*x)*a^2
```
and
\[ \text{diff}(f, a, 2) \]
which returns
\[ \text{ans} = -\sin(a \times x) \times x^2 \]

Define \( a, b, x, n, t, \) and \( \theta \) in the MATLAB workspace, using the `sym` command. The table below illustrates the `diff` command.

<table>
<thead>
<tr>
<th>( f )</th>
<th>( \text{diff}(f) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x^n )</td>
<td>( x^n \times n \times x )</td>
</tr>
<tr>
<td>( \sin(a \times t + b) )</td>
<td>( \cos(a \times t + b) \times a )</td>
</tr>
<tr>
<td>( \exp(i \times \theta) )</td>
<td>( i \times \exp(i \times \theta) )</td>
</tr>
</tbody>
</table>

To differentiate the Bessel function of the first kind, \( \text{besselj}(n, z) \), with respect to \( z \), type

```matlab
syms n z
b = besselj(n, z);
db = diff(b)
```

which returns
\[ \text{db} = -\text{besselj}(n + 1, z) + n / z \times \text{besselj}(n, z) \]

The `diff` function can also take a symbolic matrix as its input. In this case, the differentiation is done element-by-element. Consider the example

```matlab
syms a x
A = [\cos(a \times x), \sin(a \times x); -\sin(a \times x), \cos(a \times x)]
```

which returns
\[ A = \begin{bmatrix} \cos(a \times x) & \sin(a \times x) \\ -\sin(a \times x) & \cos(a \times x) \end{bmatrix} \]
The command

\[ \text{diff}(A) \]

returns

\[
\text{ans} = \\
\begin{bmatrix}
-\sin(a*x)*a, & \cos(a*x)*a \\
-\cos(a*x)*a, & -\sin(a*x)*a
\end{bmatrix}
\]

You can also perform differentiation of a column vector with respect to a row vector. Consider the transformation from Euclidean \((x, y, z)\) to spherical \((r, \lambda, \phi)\) coordinates as given by \(x = r \cos \lambda \cos \phi\), \(y = r \cos \lambda \sin \phi\), and \(z = r \sin \lambda\). Note that \(\lambda\) corresponds to elevation or latitude while \(\phi\) denotes azimuth or longitude.

To calculate the Jacobian matrix, \(J\), of this transformation, use the `jacobian` function. The mathematical notation for \(J\) is

\[
J = \frac{\partial(x, y, z)}{\partial(r, \lambda, \phi)}
\]

For the purposes of toolbox syntax, we use \(l\) for \(\lambda\) and \(f\) for \(\phi\). The commands

\[
\text{syms } r \text{l f} \\
x = r \cos(l) \cos(f); \ y = r \cos(l) \sin(f); \ z = r \sin(l) \\
J = \text{jacobian}([x; y; z], [r \ l \ f])
\]

return the Jacobian.
\[
J = \\
\begin{bmatrix}
\cos(l)\cos(f), & -r\sin(l)\cos(f), & -r\cos(l)\sin(f) \\
\cos(l)\sin(f), & -r\sin(l)\sin(f), & r\cos(l)\cos(f) \\
\sin(l), & r\cos(l), & 0
\end{bmatrix}
\]

and the command

\[
detJ = \text{simple}(\text{det}(J))
\]

returns

\[
detJ = -\cos(l)\cdot r^2
\]

Notice that the first argument of the \text{jacobian} function must be a column vector and the second argument a row vector. Moreover, since the determinant of the Jacobian is a rather complicated trigonometric expression, we used the \text{simple} command to make trigonometric substitutions and reductions (simplifications). The section “Simplifications and Substitutions” discusses simplification in more detail.

A table summarizing \text{diff} and \text{jacobian} follows.

<table>
<thead>
<tr>
<th>Mathematical Operator</th>
<th>MATLAB Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \frac{df}{dx} )</td>
<td>\text{diff}(f) or \text{diff}(f,x)</td>
</tr>
<tr>
<td>( \frac{df}{da} )</td>
<td>\text{diff}(f,a)</td>
</tr>
<tr>
<td>( \frac{d^2f}{db^2} )</td>
<td>\text{diff}(f,b,2)</td>
</tr>
<tr>
<td>( J = \frac{\partial(r,t)}{\partial(u,v)} )</td>
<td>\text{Jacobian}([r:t],[u,v])</td>
</tr>
</tbody>
</table>
Limits

The fundamental idea in calculus is to make calculations on functions as a variable “gets close to” or approaches a certain value. Recall that the definition of the derivative is given by a limit

\[ f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \]

provided this limit exists. The Symbolic Math Toolbox allows you to compute the limits of functions in a direct manner. The commands

```matlab
syms h n x
limit((cos(x+h) - cos(x))/h, h, 0)
```

which return

\[ \text{ans} = -\sin(x) \]

and

```matlab
limit((1 + x/n)^n, n, inf)
```

which returns

\[ \text{ans} = \exp(x) \]

illustrate two of the most important limits in mathematics: the derivative (in this case of \( \cos(x) \)) and the exponential function. While many limits

\[ \lim_{x \to a} f(x) \]

are “two sided” (that is, the result is the same whether the approach is from the right or left of \( a \)), limits at the singularities of \( f(x) \) are not. Hence, the three limits

\[ \lim_{x \to 0} \frac{1}{x}, \lim_{x \to 0^-} \frac{1}{x}, \text{ and } \lim_{x \to 0^+} \frac{1}{x} \]

yield the three distinct results: undefined, \(-\infty\), and \(+\infty\), respectively.
In the case of undefined limits, the Symbolic Math Toolbox returns NaN (not a number). The command

\[
\text{limit}(1/x, x, 0)
\]

or

\[
\text{limit}(1/x)
\]

returns

\[
\text{ans} =
\]

\[
\text{NaN}
\]

The command

\[
\text{limit}(1/x, x, 0, \text{'left'})
\]

returns

\[
\text{ans} =
\]

\[
-\infty
\]

while the command

\[
\text{limit}(1/x, x, 0, \text{'right'})
\]

returns

\[
\text{ans} =
\]

\[
\infty
\]

Observe that the default case, \(\text{limit}(f)\) is the same as \(\text{limit}(f, x, 0)\). Explore the options for the \text{limit} command in this table. Here, we assume that \(f\) is a function of the symbolic object \(x\).

<table>
<thead>
<tr>
<th>Mathematical Operation</th>
<th>MATLAB Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lim_{x \to 0} f(x))</td>
<td>\text{limit}(f)</td>
</tr>
<tr>
<td>(\lim_{x \to a} f(x))</td>
<td>\text{limit}(f, x, a) or \text{limit}(f, a)</td>
</tr>
</tbody>
</table>
If \( f \) is a symbolic expression, then

\[
\text{int}(f)
\]

attempts to find another symbolic expression, \( F \), so that \( \text{diff}(F) = f \). That is, \( \text{int}(f) \) returns the indefinite integral or antiderivative of \( f \) (provided one exists in closed form). Similar to differentiation,

\[
\text{int}(f, v)
\]

uses the symbolic object \( v \) as the variable of integration, rather than the variable determined by \text{findsym}. See how \text{int} works by looking at this table.

<table>
<thead>
<tr>
<th>Mathematical Operation</th>
<th>MATLAB Command</th>
</tr>
</thead>
</table>
| \[
\lim_{x \to a^-} f(x)
\] | \text{limit}(f, x, a, 'left') |
| \[
\lim_{x \to a^+} f(x)
\] | \text{limit}(f, x, a, 'right') |

### Integration

If \( f \) is a symbolic expression, then

\[
\text{int}(f)
\]

attempts to find another symbolic expression, \( F \), so that \( \text{diff}(F) = f \). That is, \( \text{int}(f) \) returns the indefinite integral or antiderivative of \( f \) (provided one exists in closed form). Similar to differentiation,

\[
\text{int}(f, v)
\]

uses the symbolic object \( v \) as the variable of integration, rather than the variable determined by \text{findsym}. See how \text{int} works by looking at this table.
In contrast to differentiation, symbolic integration is a more complicated task. A number of difficulties can arise in computing the integral. The antiderivative, \( F \), may not exist in closed form; it may define an unfamiliar function; it may exist, but the software can’t find the antiderivative; the software could find it on a larger computer, but runs out of time or memory on the available machine. Nevertheless, in many cases, MATLAB can perform symbolic integration successfully. For example, create the symbolic variables

\[
syms \ a \ b \ \theta \ x \ y \ n \ x1 \ u
\]

This table illustrates integration of expressions containing those variables.

<table>
<thead>
<tr>
<th>( f )</th>
<th>( \text{int}(f) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x^n )</td>
<td>( x^{(n+1)}/(n+1) )</td>
</tr>
<tr>
<td>( y^{(-1)} )</td>
<td>( \log(y) )</td>
</tr>
<tr>
<td>( n^x )</td>
<td>( 1/\log(n)*n^x )</td>
</tr>
<tr>
<td>( \sin(a*\theta+b) )</td>
<td>( -1/a*\cos(a*\theta+b) )</td>
</tr>
<tr>
<td>( \exp(-x1^2) )</td>
<td>( 1/2<em>pi^{(1/2)}</em>\text{erf}(x1) )</td>
</tr>
<tr>
<td>( 1/(1+u^2) )</td>
<td>( \text{atan}(u) )</td>
</tr>
</tbody>
</table>

The last example shows what happens if the toolbox can’t find the antiderivative; it simply returns the command, including the variable of integration, unevaluated.

Definite integration is also possible. The commands

\[
\text{int}(f, a, b)
\]

and

\[
\text{int}(f, v, a, b)
\]

are used to find a symbolic expression for

\[
\int_a^b f(x)\,dx \text{ and } \int_a^b f(v)\,dv
\]

respectively.
Here are some additional examples.

<table>
<thead>
<tr>
<th>f</th>
<th>a, b</th>
<th>int(f,a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^7</td>
<td>0, 1</td>
<td>1/8</td>
</tr>
<tr>
<td>1/x</td>
<td>1, 2</td>
<td>log(2)</td>
</tr>
<tr>
<td>log(x)*sqrt(x)</td>
<td>0, 1</td>
<td>-4/9</td>
</tr>
<tr>
<td>exp(-x^2)</td>
<td>0, inf</td>
<td>1/2*pi^(1/2)</td>
</tr>
<tr>
<td>besselj(1,z)</td>
<td>0, 1</td>
<td>1/4*hypergeom([1],[2,2],-1/4)</td>
</tr>
</tbody>
</table>

For the Bessel function (besselj) example, it is possible to compute a numerical approximation to the value of the integral, using the `double` function. The command

```matlab
a = int(besselj(1,z),0,1)
```

returns

```matlab
a =
1/4*hypergeom([1],[2,2],-1/4)
```

and the command

```matlab
a = double(a)
```

returns

```matlab
a =
0.2348
```

### Integration with Real Constants

One of the subtleties involved in symbolic integration is the “value” of various parameters. For example, the expression

\[ e^{-(kx)^2} \]

is the positive, bell shaped curve that tends to 0 as x tends to ±∞ for any real number k. An example of this curve is depicted below with
$k = \frac{1}{\sqrt{2}}$

and generated, using these commands.

```matlab
syms x
k = sym(1/sqrt(2));
f = exp(-(k*x)^2);
ezplot(f)
```

The Maple kernel, however, does not, a priori, treat the expressions $k^2$ or $x^2$ as positive numbers. To the contrary, Maple assumes that the symbolic variables $x$ and $k$ as a priori indeterminate. That is, they are purely formal variables with no mathematical properties. Consequently, the initial attempt to compute the integral

```
exp(-1/2 x^2)
```

```
x
-3 -2 -1 0 1 2 3
```
in the Symbolic Math Toolbox, using the commands

\[
\text{syms } x \ k; \\
f = \exp(-\(k^2x^2\)); \\
\text{int}(f, x, -\infty, \infty)
\]

results in the output

Definite integration: Can't determine if the integral is convergent. 
Need to know the sign of \( \rightarrow k^2 \)
Will now try indefinite integration and then take limits.

Warning: Explicit integral could not be found.
\[
\text{ans} = \text{int}(\exp(-k^2x^2), x= -\infty..\infty)
\]

In the next section, you will see how to make \( k \) a real variable and therefore \( k^2 \) positive.

**Real Variables via sym**

Notice that Maple is not able to determine the sign of the expression \( k^2 \). How does one surmount this obstacle? The answer is to make \( k \) a real variable, using the `sym` command. One particularly useful feature of `sym`, namely the `real` option, allows you to declare \( k \) to be a real variable. Consequently, the integral above is computed, in the toolbox, using the sequence

\[
\text{syms } k \text{ real} \\
\text{int}(f, x, -\infty, \infty)
\]

which returns

\[
\text{ans} = \frac{\text{signum}(k)}{k}\pi^{(1/2)}
\]

Notice that \( k \) is now a symbolic object in the MATLAB workspace and a real variable in the Maple kernel workspace. By typing

\[
\text{clear } k
\]
you only clear $k$ in the MATLAB workspace. To ensure that $k$ has no formal properties (that is, to ensure $k$ is a purely formal variable), type

```matlab
syms k unreal
```

This variation of the `syms` command clears $k$ in the Maple workspace. You can also declare a sequence of symbolic variables $w, y, x, z$ to be real, using

```matlab
syms w x y z real
```

In this case, all of the variables in between the words `syms` and `real` are assigned the property `real`. That is, they are real variables in the Maple workspace.

**Symbolic Summation**

You can compute symbolic summations, when they exist, by using the `symsum` command. For example, the p-series

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots$$

adds to $\pi^2/6$, while the geometric series $1 + x + x^2 + \ldots$ adds to $1/(1-x)$, provided $|x| < 1$. Three summations are demonstrated below.

```matlab
syms x k
s1 = symsum(1/k^2, 1, inf)
s2 = symsum(x^k, k, 0, inf)

s1 =

1/6*pi^2

s2 =

-1/(x-1)
```
Taylor Series

The statements

```matlab
syms x
f = 1/(5+4*cos(x))
T = taylor(f,8)
```

return

```
T =
1/9 + 2/81*x^2 + 5/1458*x^4 + 49/131220*x^6
```

which is all the terms up to, but not including, order eight \( O(x^8) \) in the Taylor series for \( f(x) \).

\[
\sum_{n=0}^{\infty} \frac{(x-a)^n}{n!} f^{(n)}(a)
\]

Technically, \( T \) is a Maclaurin series, since its basepoint is \( a = 0 \).

The command

```
pretty(T)
```

prints \( T \) in a format resembling typeset mathematics.

```
2 4 49 6
1/9 + 2/81*x + 5/1458*x + 49/131220*x
```

These commands

```matlab
syms x
g = exp(x*sin(x))
t = taylor(g,12,2);
```

generate the first 12 nonzero terms of the Taylor series for \( g \) about \( x = 2 \).

Let’s plot these functions together to see how well this Taylor approximation compares to the actual function \( g \).
The function
\[ f(x) = \frac{1}{5 + 4\cos(x)} \]

provides a starting point for illustrating several calculus operations in the toolbox. It is also an interesting function in its own right. The statements
syms x
f = 1/(5+4*cos(x))

store the symbolic expression defining the function in \( f \).

The function \texttt{ezplot(f)} produces the plot of \( f(x) \) as shown below.

The \texttt{ezplot} function tries to make reasonable choices for the range of the \( x \)-axis and for the resulting scale of the \( y \)-axis. Its choices can be overridden by an additional input argument, or by subsequent \texttt{axis} commands. The default domain for a function displayed by \texttt{ezplot} is \(-2\pi \leq x \leq 2\pi\). To produce a graph of \( f(x) \) for \( a \leq x \leq b \), type

\[ \texttt{ezplot(f,[a b])} \]
Let's now look at the second derivative of the function \( f \).

\[
f_2 = \text{diff}(f, 2)
\]

\[
f_2 = \frac{32}{(5+4 \cos(x))^3} \sin(x)^2 + \frac{4}{(5+4 \cos(x))^2} \cos(x)
\]

Equivalently, we can type \( f_2 = \text{diff}(f, x, 2) \). The default scaling in \( \text{ezplot} \) cuts off part of \( f_2 \)'s graph. Set the axes limits manually to see the entire function.

\[
\text{ezplot}(f_2)
\]

\[
\text{axis}([-2\pi 2\pi -5 2])
\]

From the graph, it appears that the values of \( f''(x) \) lie between -4 and 1. As it turns out, this is not true. We can calculate the exact range for \( f \) (i.e., compute its actual maximum and minimum).
The actual maxima and minima of $f''(x)$ occur at the zeros of $f'''(x)$. The statements

\[
f3 = \text{diff}(f2);
\text{pretty}(f3)
\]

compute $f''(x)$ and display it in a more readable format.

\[
\begin{align*}
3 & \sin(x) \quad 3 \sin(x) \cos(x) \quad \sin(x) \\
384 \frac{\sin(x)}{4} + 96 \frac{\sin(x)}{3} - 4 \frac{\sin(x)}{2} \\
(5 + 4 \cos(x)) & (5 + 4 \cos(x)) (5 + 4 \cos(x))
\end{align*}
\]

We can simplify this expression using the statements

\[
f3 = \text{simple}(f3);
\text{pretty}(f3)
\]

\[
\begin{align*}
2 \sin(x) (96 \sin(x) + 80 \cos(x) + 80 \cos(x) - 25) \\
4 \frac{\sin(x)}{4} \\
(5 + 4 \cos(x))
\end{align*}
\]

Now use the `solve` function to find the zeros of $f'''(x)$.

\[
z = \text{solve}(f3)
\]

returns a 5-by-1 symbolic matrix

\[
z = \\
[0] \\
[\text{atan}((-255 - 60*19^{1/2})^{1/2}, 10 + 3*19^{1/2})] \\
[\text{atan}((-255 - 60*19^{1/2})^{1/2}, 10 + 3*19^{1/2})] \\
[\text{atan}((-255 + 60*19^{1/2})^{1/2}/(10 - 3*19^{1/2})) + \pi] \\
[-\text{atan}((-255 + 60*19^{1/2})^{1/2}/(10 - 3*19^{1/2})) - \pi]
\]

each of whose entries is a zero of $f'''(x)$. The commands

\[
\text{format; % Default format of 5 digits}
\text{zr = double(z)}
\]
convert the zeros to double form.

\[ z_r = \]

\[
\begin{array}{c}
0 \\
0 + 2.4381i \\
0 - 2.4381i \\
2.4483 \\
-2.4483
\end{array}
\]

So far, we have found three real zeros and two complex zeros. However, a graph of \( f_3 \) shows that we have not yet found all its zeros.

\[
\text{ezplot}(f_3) \\
\text{hold on;}
\]

\[
\text{plot}(z_r, 0*z_r, 'ro')
\]

\[
\text{plot([-2*pi, 2*pi], [0,0], 'g-.');}
\]

\[
\text{title('Zeros of f3')}
\]
This occurs because \( f'''(x) \) contains a factor of \( \sin(x) \), which is zero at integer multiples of \( \pi \). The function, \( \text{solve}(\sin(x)) \), however, only reports the zero at \( x = 0 \).

We can obtain a complete list of the real zeros by translating \( z_r \):

\[
z_r = [0 \; z_r(4) \; \pi \; 2\pi - z_r(4)]
\]

by multiples of \( 2\pi \):

\[
z_r = [z_r \cdot 2\pi \; z_r \; z_r + 2\pi];
\]

Now let’s plot the transformed \( z_r \) on our graph for a complete picture of the zeros of \( f_3 \).

\[
\text{plot}(z_r, 0*z_r, 'kX')
\]
The first zero of $f''(x)$ found by `solve` is at $x = 0$. We substitute 0 for the symbolic variable in $f_2$

$$f_2'' = \text{subs}(f_2, x, 0)$$

to compute the corresponding value of $f''(0)$.

$$f_2'' = 0.0494$$

A look at the graph of $f''(x)$ shows that this is only a local minimum, which we demonstrate by replotting $f_2$.

```matlab
clf
ezplot(f2)
axis([-2*pi 2*pi -4.25 1.25])
ylabel('f_2');
title('Plot of $f_2 = f'''(x)$');
hold on
plot(0, double(f20), 'ro')
text(-1, -0.25, 'Local minimum')
```

The resulting plot
indicates that the global minima occur near $x = -\pi$ and $x = \pi$. We can demonstrate that they occur exactly at $x = \pm \pi$, using the following sequence of commands. First we try substituting $-\pi$ and $\pi$ into $f'''(x)$.

\[ \text{simple(} [\text{subs}(f3, x, -\text{sym(pi)}), \text{subs}(f3, x, \text{sym(pi)})) \text{)} \]

The result

\[ \text{ans} = \\
[ 0, 0] \]

shows that $-\pi$ and $\pi$ happen to be critical points of $f'''(x)$. We can see that $-\pi$ and $\pi$ are global minima by plotting $f2(-\pi)$ and $f2(\pi)$ against $f2(x)$.

\[ \text{m1 = double(subs(f2, x, -pi)); m2 = double(subs(f2, x, pi));} \]
\[ \text{plot(-pi, m1, 'go', pi, m2, 'go') } \]
\[ \text{text(-1, -4, 'Global minima')} \]
The actual minima are \( m_1, m_2 \)

\[
\text{ans} =
\begin{bmatrix}
-4, & -4
\end{bmatrix}
\]

as shown in the following plot.

The foregoing analysis confirms part of our original guess that the range of \( f''(x) \) is \([-4, 1]\). We can confirm the other part by examining the fourth zero of \( f'''(x) \) found by `solve`. First extract the fourth zero from \( z \) and assign it to a separate variable

\[
s = z(4)
\]

to obtain

\[
s = \tan((-255 + 60 \cdot 19^{1/2})^{1/2}/(10 - 3 \cdot 19^{1/2})) + \pi
\]
Executing
\[ sd = \text{double}(s) \]
displays the zero's corresponding numeric value.
\[ sd = \]
\[ 2.4483 \]

Plotting the point \( (s, f_2(s)) \) against \( f_2 \), using
\[ M1 = \text{double} \left( \text{subs} \left( f_2, x, s \right) \right); \]
\[ \text{plot} \left( sd, M1, 'ko' \right) \]
\[ \text{text}(-1,1,'Global maximum') \]

visually confirms that \( s \) is a maximum.

The maximum is \( M1 = 1.0051 \).
Therefore, our guess that the maximum of \( f''(x) \) is \([-4, 1]\) was close, but incorrect. The actual range is \([-4, 1.0051]\).

Now, let's see if integrating \( f''(x) \) twice with respect to \( x \) recovers our original function \( f(x) = \frac{1}{(5 + 4 \cos x)} \). The command

\[
g = \int (\int f2)
\]

returns

\[
g = -\frac{8}{(\tan(\frac{1}{2}x)^2 + 9)}
\]

This is certainly not the original expression for \( f(x) \). Let's look at the difference \( f(x) - g(x) \).

\[
d = f - g
\]

\[
\text{pretty}(d)
\]

\[
\frac{1}{5 + 4 \cos(x)} + \frac{8}{2 \tan(\frac{1}{2}x) + 9}
\]

We can simplify this using \texttt{simple(d)} or \texttt{simplify(d)}. Either command produces

\[
\text{ans = 1}
\]

This illustrates the concept that differentiating \( f(x) \) twice, then integrating the result twice, produces a function that may differ from \( f(x) \) by a linear function of \( x \).

Finally, integrate \( f(x) \) once more.

\[
F = \int (f)
\]

The result

\[
F = \frac{2}{3} \arctan(\frac{1}{3} \tan(\frac{1}{2}x))
\]

involves the arctangent function.
Though \( F(x) \) is the antiderivative of a continuous function, it is itself discontinuous as the following plot shows.

\[
\text{ezplot}(F)
\]

![Plot of \( 2/3 \tan(1/3 \tan(1/2 x)) \)]

Note that \( F(x) \) has jumps at \( x = \pm \pi \). This occurs because \( \tan x \) is singular at \( x = \pm \pi \).

In fact, as

\[
\text{ezplot(atan(tan(x)))}
\]

shows, the numerical value of \( \text{atan}(\tan(x)) \) differs from \( x \) by a piecewise constant function that has jumps at odd multiples of \( \pi/2 \).
To obtain a representation of $F(x)$ that does not have jumps at these points, we must introduce a second function, $J(x)$, that compensates for the discontinuities. Then we add the appropriate multiple of $J(x)$ to $F(x)$

\[
J = \text{sym}(\text{round}(x/(2\times\pi)))
\]
\[
c = \text{sym}(2/3\times\pi)
\]
\[
F1 = F + c \times J
\]

and plot the result.

\[
\text{ezplot}(F1, [-6.28, 6.28])
\]

This representation does have a continuous graph.
Notice that we use the domain [-6.28, 6.28] in `ezplot` rather than the default domain [-2π, 2π]. The reason for this is to prevent an evaluation of
\[ F = \frac{2}{3} \arctan\left(\frac{1}{3} \tan\left(\frac{1}{2} x\right)\right) + \frac{2}{3} \pi \round\left(\frac{1}{2} x / \pi\right) \]
at the singular points \( x = -\pi \) and \( x = \pi \) where the jumps in \( F \) and \( J \) do not cancel out one another. The proper handling of branch cut discontinuities in multivalued functions like \( \arctan x \) is a deep and difficult problem in symbolic computation. Although MATLAB and Maple cannot do this entirely automatically, they do provide the tools for investigating such questions.
Simplifications and Substitutions

There are several functions that simplify symbolic expressions and are used to perform symbolic substitutions.

**Simplifications**

Here are three different symbolic expressions.

```matlab
syms x
f = x^3 - 6*x^2 + 11*x - 6
g = (x - 1)*(x - 2)*(x - 3)
h = x*(x*(x - 6) + 11) - 6
```

Here are their prettyprinted forms, generated by

```matlab
pretty(f), pretty(g), pretty(h)
```

```
3 2
x - 6 x + 11 x - 6

(x - 1) (x - 2) (x - 3)

x (x (x - 6) + 11) - 6
```

These expressions are three different representations of the same mathematical function, a cubic polynomial in x.

Each of the three forms is preferable to the others in different situations. The first form, f, is the most commonly used representation of a polynomial. It is simply a linear combination of the powers of x. The second form, g, is the factored form. It displays the roots of the polynomial and is the most accurate for numerical evaluation near the roots. But, if a polynomial does not have such simple roots, its factored form may not be so convenient. The third form, h, is the Horner, or nested, representation. For numerical evaluation, it involves the fewest arithmetic operations and is the most accurate for some other ranges of x.

The symbolic simplification problem involves the verification that these three expressions represent the same function. It also involves a less clearly defined objective — which of these representations is “the simplest”? 
This toolbox provides several functions that apply various algebraic and trigonometric identities to transform one representation of a function into another, possibly simpler, representation. These functions are `collect`, `expand`, `horner`, `factor`, `simplify`, and `simple`.

**collect**
The statement
```
collect(f)
```
views \( f \) as a polynomial in its symbolic variable, say \( x \), and collects all the coefficients with the same power of \( x \). A second argument can specify the variable in which to collect terms if there is more than one candidate. Here are a few examples.

<table>
<thead>
<tr>
<th>( f )</th>
<th><code>collect(f)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>((x-1)<em>(x-2)</em>(x-3))</td>
<td>( x^3 - 6<em>x^2 + 11</em>x - 6 )</td>
</tr>
<tr>
<td>(x*(x^2(x-6)+11))</td>
<td>( x^3 - 6<em>x^2 + 11</em>x - 6 )</td>
</tr>
<tr>
<td>((1+x)<em>t + x</em>t)</td>
<td>( 2<em>x</em>t + t )</td>
</tr>
</tbody>
</table>

**expand**
The statement
```
expand(f)
```
distributes products over sums and applies other identities involving functions of sums. For example,

<table>
<thead>
<tr>
<th>( f )</th>
<th><code>expand(f)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>( a*(x + y))</td>
<td>( a<em>x + a</em>y )</td>
</tr>
<tr>
<td>((x-1)<em>(x-2)</em>(x-3))</td>
<td>( x^3 - 6<em>x^2 + 11</em>x - 6 )</td>
</tr>
<tr>
<td>(x*(x^2(x-6)+11))</td>
<td>( x^3 - 6<em>x^2 + 11</em>x - 6 )</td>
</tr>
</tbody>
</table>
The statement

\texttt{horner(f)}

transforms a symbolic polynomial \( f \) into its Horner, or nested, representation. For example,

<table>
<thead>
<tr>
<th>( f )</th>
<th>( \text{expand}(f) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \exp(a + b) )</td>
<td>( \exp(a) \times \exp(b) )</td>
</tr>
<tr>
<td>( \cos(x + y) )</td>
<td>( \cos(x) \times \cos(y) - \sin(x) \times \sin(y) )</td>
</tr>
<tr>
<td>( \cos(3 \times \cos(x)) )</td>
<td>( 4x^3 - 3x )</td>
</tr>
</tbody>
</table>

\textbf{horner}

The statement

\hspace{1cm} \texttt{horner(f)}

expresses \( f \) as a product of polynomials of lower degree with rational coefficients. If \( f \) cannot be factored over the rational numbers, the result is \( f \) itself. For example,

<table>
<thead>
<tr>
<th>( f )</th>
<th>( \text{horner}(f) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x^3 - 6 \times x^2 + 11 \times x - 6 )</td>
<td>( -6 + (11 + (-6 + x) \times x) \times x )</td>
</tr>
<tr>
<td>( 1.1 + 2.2 \times x + 3.3 \times x^2 )</td>
<td>( 11/10 + (11/5 + 33/10 \times x) \times x )</td>
</tr>
</tbody>
</table>

\textbf{factor}

If \( f \) is a polynomial with rational coefficients, the statement

\hspace{1cm} \texttt{factor(f)}

expresses \( f \) as a product of polynomials of lower degree with rational coefficients. If \( f \) cannot be factored over the rational numbers, the result is \( f \) itself. For example,

<table>
<thead>
<tr>
<th>( f )</th>
<th>( \text{factor}(f) )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( x^3 - 6 \times x^2 + 11 \times x - 6 )</td>
<td>( (x - 1) \times (x - 2) \times (x - 3) )</td>
</tr>
<tr>
<td>( x^3 - 6 \times x^2 + 11 \times x - 5 )</td>
<td>( x^3 - 6 \times x^2 + 11 \times x - 5 )</td>
</tr>
<tr>
<td>( x^6 + 1 )</td>
<td>( (x^2 + 1) \times (x^4 - x^2 + 1) )</td>
</tr>
</tbody>
</table>
Here is another example involving \texttt{factor}. It factors polynomials of the form 
\( x^n + 1 \). This code

```matlab
sym x;
n = (1:9)';
p = x.^n + 1;
f = factor(p);
[p, f]
```

returns a matrix with the polynomials in its first column and their factored forms in its second.

\[
\begin{bmatrix}
  x+1 , & x+1 \\
  x^2+1 , & x^2+1 \\
  x^3+1 , & (x+1)*(x^2+x+1) \\
  x^4+1 , & x^4+1 \\
  x^5+1 , & (x+1)*(x^4-x^3+x^2-x+1) \\
  x^6+1 , & (x^2+1)*(x^4-x^2+1) \\
  x^7+1 , & (x+1)*(1-x+x^2-x^3+x^4-x^5+x^6) \\
  x^8+1 , & x^8+1 \\
  x^9+1 , & (x+1)*(x^2+x+1)*(x^6-x^3+1)
\end{bmatrix}
\]

As an aside at this point, we mention that \texttt{factor} can also factor symbolic objects containing integers. This is an alternative to using the \texttt{factor} function in MATLAB's \texttt{specfun} directory. For example, the following code segment

```matlab
N = sym(1);
for k = 2:11
 N(k) = 10*N(k-1)+1;
end
[N' factor(N')]
```
displays the factors of symbolic integers consisting of 1s.

\[
\begin{bmatrix}
1, \\
11, \\
111, \\
1111, \\
11111, \\
111111, \\
1111111, \\
11111111, \\
111111111, \\
1111111111,
\end{bmatrix}
\begin{bmatrix}
1, \\
(11), \\
(3)*(37), \\
(11)*(101), \\
(41)*(271), \\
(3)*(11)*(13)*(37), \\
(239)*(4649), \\
(11)*(73)*(101)*(137), \\
(3)^2*(37)*(333667), \\
(11)*(41)*(271)*(9091), \\
(513239)*(21649)
\end{bmatrix}
\]

**simplify**

The `simplify` function is a powerful, general purpose tool that applies a number of algebraic identities involving sums, integral powers, square roots and other fractional powers, as well as a number of functional identities involving trig functions, exponential and log functions, Bessel functions, hypergeometric functions, and the gamma function. Here are some examples.

<table>
<thead>
<tr>
<th>f</th>
<th>simplify(f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x*(x*(x-6)+11)-6</td>
<td>x^3-6<em>x^2+11</em>x-6</td>
</tr>
<tr>
<td>(1-x^2)/(1-x)</td>
<td>x+1</td>
</tr>
<tr>
<td>(1/a^3+6/a^2+12/a+8)^(1/3)</td>
<td>((2*a+1)^3/a^3)^(1/3)</td>
</tr>
<tr>
<td>syms x y positive</td>
<td>log(x*y)</td>
</tr>
<tr>
<td>log(x*y)</td>
<td>log(x)+log(y)</td>
</tr>
<tr>
<td>exp(x) * exp(y)</td>
<td>exp(x+y)</td>
</tr>
<tr>
<td>besselj(2,x) + besselj(0,x)</td>
<td>2/x*besselj(1,x)</td>
</tr>
<tr>
<td>gamma(x+1)-x*gamma(x)</td>
<td>0</td>
</tr>
<tr>
<td>cos(x)^2 + sin(x)^2</td>
<td>1</td>
</tr>
</tbody>
</table>
simple

The `simple` function has the unorthodox mathematical goal of finding a simplification of an expression that has the fewest number of characters. Of course, there is little mathematical justification for claiming that one expression is “simpler” than another just because its ASCII representation is shorter, but this often proves satisfactory in practice.

The `simple` function achieves its goal by independently applying `simplify`, `collect`, `factor`, and other simplification functions to an expression and keeping track of the lengths of the results. The `simple` function then returns the shortest result.

The `simple` function has several forms, each returning different output. The form

```matlab
simple(f)
```

displays each trial simplification and the simplification function that produced it in the MATLAB command window. The `simple` function then returns the shortest result. For example, the command

```matlab
simple(cos(x)^2 + sin(x)^2)
```

displays the following alternative simplifications in the MATLAB command window:

- **simplify**:
  
  1

- **radsimp**:
  
  \( \cos(x)^2 + \sin(x)^2 \)

- **combine(trig)**:
  
  1

- **factor**:
  
  \( \cos(x)^2 + \sin(x)^2 \)

- **expand**:
  
  \( \cos(x)^2 + \sin(x)^2 \)

- **convert(exp)**:
  
  \( \left( \frac{1}{2} \exp(i \cdot x) + \frac{1}{2} \exp(i \cdot x) \right)^2 - \frac{1}{4} \left( \exp(i \cdot x) - 1 \exp(i \cdot x) \right)^2 \)
Simplifications and Substitutions

\begin{verbatim}
convert(sincos):
  \cos(x)^2 + \sin(x)^2

convert(tan):
  (1 - \tan(1/2*x)^2)^2/(1 + \tan(1/2*x)^2)^2 + 4*\tan(1/2*x)^2/
    (1 + \tan(1/2*x)^2)^2

collect(x):
  \cos(x)^2 + \sin(x)^2
and returns
  ans =
  1

This form is useful when you want to check, for example, whether the shortest
form is indeed the simplest. If you are not interested in how \texttt{simple} achieves
its result, use the form
  f = \texttt{simple}(f)

This form simply returns the shortest expression found. For example, the
statement
  f = \texttt{simple}(\cos(x)^2 + \sin(x)^2)
returns
  f =
  1

If you want to know which simplification returned the shortest result, use the
multiple output form.
  [F, how] = \texttt{simple}(f)

This form returns the shortest result in the first variable and the simplification
method used to achieve the result in the second variable. For example, the
statement
  [f, how] = \texttt{simple}(\cos(x)^2 + \sin(x)^2)
\end{verbatim}
The `simple` function sometimes improves on the result returned by `simplify`, one of the simplifications that it tries. For example, when applied to the examples given for `simplify`, `simple` returns a simpler (or at least shorter) result in two cases.

In some cases, it is advantageous to apply `simple` twice to obtain the effect of two different simplification functions. For example, the statements

```matlab
f = (1/a^3+6/a^2+12/a+8)^(1/3);
simple(simple(f))
```

returns

```matlab
f =
1

how =
combine
```

2 + 1/a

The first application, `simple(f)`, uses `radsimp` to produce `(2*a+1)/a`; the second application uses `combine(trig)` to transform this to `1/a^2 + 1/a`.

The `simple` function is particularly effective on expressions involving trigonometric functions. Here are some examples.

<table>
<thead>
<tr>
<th>f</th>
<th><code>simplify(f)</code></th>
<th><code>simple(f)</code></th>
</tr>
</thead>
<tbody>
<tr>
<td>cos(x)^2 + sin(x)^2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2*cos(x)^2 - sin(x)^2</td>
<td>3*cos(x)^2 - 1</td>
<td></td>
</tr>
<tr>
<td>cos(x)^2 - sin(x)^2</td>
<td>cos(2*x)</td>
<td></td>
</tr>
</tbody>
</table>
Simplifications and Substitutions

There are two functions for symbolic substitution: \texttt{subexpr} and \texttt{subs}.

\textbf{Substitutions}

\textit{There are two functions for symbolic substitution: \texttt{subexpr} and \texttt{subs}.}

\textbf{subexpr}

These commands

\begin{verbatim}
syms a x
s = solve(x^3+a*x+1)
\end{verbatim}

\textit{solve the equation } \( x^3+a*x+1 = 0 \) \textit{ for } \( x \).

\begin{verbatim}
s = [1/6*(-108+12*(12*a^3+81)^(1/2))^(1/3)-2*a/(-108+12*(12*a^3+81)^(1/2))^(1/3)],
     [-1/12*(-108+12*(12*a^3+81)^(1/2))^(1/3)+a/(-108+12*(12*a^3+81)^(1/2))^(1/3)+1/2*i*3^(1/2)*(1/6*(-108+12*(12*a^3+81)^(1/2))^(1/3)+2*a/(-108+12*(12*a^3+81)^(1/2))^(1/3))],
     [-1/12*(-108+12*(12*a^3+81)^(1/2))^(1/3)+a/(-108+12*(12*a^3+81)^(1/2))^(1/3)-1/2*i*3^(1/2)*(1/6*(-108+12*(12*a^3+81)^(1/2))^(1/3)+2*a/(-108+12*(12*a^3+81)^(1/2))^(1/3))]\end{verbatim}

\begin{verbatim}
\cos(x)+(-\sin(x)^2)^(1/2)\cos(x)+i*\sin(x)
\exp(i*x)
\cos(3*\acos(x))
4*x^3-3*x
\end{verbatim}
Use the pretty function to display $s$ in a more readable form.

```matlab
pretty(s)
```

$s =$

```
[1/3 a]
[1/6 %1 - 2 - - - - - - - - -]
[1/3]
[%1]
[]
[]
[1/3 a 1/2 / 1/3 a]
[- 1/12 %1 + - - - - - 1/2 i 3 | 1/6 %1 + 2 - - - - |]
[1/3 %1 | 1/3]
[%1 \ | %1 /]
[]
[]
[1/3 a 1/2 / 1/3 a]
[- 1/12 %1 + - - - - - 1/2 i 3 | 1/6 %1 + 2 - - - - |]
[1/3 %1 | 1/3]
[%1 \ | %1 /]
```

$$\frac{3}{2}$$

$%1 := -108 + 12 (12 a^3 + 81)^{1/2}$

The `pretty` command inherits the $%n$ ($n$, an integer) notation from Maple to denote subexpressions that occur multiple times in the symbolic object. The `subexpr` function allows you to save these common subexpressions as well as the symbolic object rewritten in terms of the subexpressions. The subexpressions are saved in a column vector called $sigma$.

Continuing with the example

```matlab
r = subexpr(s)
```

returns

```
sigma =
-108+12*(12*a^3+81)^{(1/2)}
```

```
r =
[1/6*sigma^(1/3) - 2*a/sigma^(1/3)]
[-1/12*sigma^(1/3) + a/sigma^(1/3) + 1/2*i*3^(1/2)*(1/6*sigma^((1/3)+2*a/sigma^(1/3)))]
```
Notice that `subexpr` creates the variable `sigma` in the MATLAB workspace. You can verify this by typing `whos`, or the command

```matlab
sigma
```

which returns

```matlab
sigma =
-108+12*(12*a^3+81)^{1/2}
```

**subs**

Let's find the eigenvalues and eigenvectors of a circulant matrix `A`.

```matlab
syms a b c
A = [a b c; b c a; c a b];
[v, E] = eig(A)
```

```matlab
v =
[((a+(b^2-b*a-c*b-c*a+a^2+c^2)^{1/2}-b)/(a-c),
 -(a-(b^2-b*a-c*b-c*a+a^2+c^2)^{1/2}-b)/(a-c), 1),
 [(b-c-(b^2-b*a-c*b-c*a+a^2+c^2)^{1/2})/(a-c),
 -(b-c+(b^2-b*a-c*b-c*a+a^2+c^2)^{1/2})/(a-c), 1),
 [1,
 1, 1]

E =
[(b^2-b*a-c*b-
 c*a+a^2+c^2)^{1/2},
 0, 0]
[(0, -(b^2-b*a-c*b-
 c*a+a^2+c^2)^{1/2}),
 0]
[(0, 0, b+c+a)]
```

Suppose we want to replace the rather lengthy expression

```matlab
(b^2-b*a-c*b-c*a+a^2+c^2)^{1/2}
```
throughout \(v\) and \(E\). We first use \texttt{subexpr}

\[
v = \texttt{subexpr}(v, 'S')
\]

which returns

\[
S = (b^2 - b*a - c*b - c*a + a^2 + c^2)^{(1/2)}
\]

\[
v = \begin{bmatrix}
  -(a+S-b)/(a-c),
  -(a-S-b)/(a-c),
  1
\end{bmatrix},
\begin{bmatrix}
  -(b-c-S)/(a-c),
  -(b-c+S)/(a-c),
  1
\end{bmatrix},
\begin{bmatrix}
  1,
  1,
  1
\end{bmatrix}
\]

Next, substitute the symbol \(S\) into \(E\) with

\[
E = \texttt{subs}(E, S, 'S')
\]

\[
E = \begin{bmatrix}
  S, 0, 0
\end{bmatrix},
\begin{bmatrix}
  0, -S, 0
\end{bmatrix},
\begin{bmatrix}
  0, 0, b+c+a
\end{bmatrix}
\]

Now suppose we want to evaluate \(v\) at \(a = 10\). We can do this using the \texttt{subs} command.

\[
\texttt{subs}(v, a, 10)
\]

This replaces all occurrences of \(a\) in \(v\) with 10.

\[
\begin{bmatrix}
  -(10+S-b)/(10-c),
  -(10-S-b)/(10-c),
  1
\end{bmatrix},
\begin{bmatrix}
  -(b-c-S)/(10-c),
  -(b-c+S)/(10-c),
  1
\end{bmatrix},
\begin{bmatrix}
  1,
  1,
  1
\end{bmatrix}
\]

Notice, however, that the symbolic expression represented by \(S\) is unaffected by this substitution. That is, the symbol \(a\) in \(S\) is not replaced by 10. The \texttt{subs} command is also a useful function for substituting in a variety of values for several variables in a particular expression. Let's look at \(S\). Suppose that in addition to substituting \(a = 10\), we also want to substitute the values for 2 and 10 for \(b\) and \(c\), respectively. The way to do this is to set values for \(a\), \(b\), and \(c\) in the workspace. Then \texttt{subs} evaluates its input using the existing symbolic and double variables in the current workspace. In our example, we first set
a = 10; b = 2; c = 10;
subs(S)

ans =
8

To look at the contents of our workspace, type whos, which gives

<table>
<thead>
<tr>
<th>Name</th>
<th>Size</th>
<th>Bytes</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3x3</td>
<td>878</td>
<td>sym object</td>
</tr>
<tr>
<td>E</td>
<td>3x3</td>
<td>888</td>
<td>sym object</td>
</tr>
<tr>
<td>S</td>
<td>1x1</td>
<td>186</td>
<td>sym object</td>
</tr>
<tr>
<td>a</td>
<td>1x1</td>
<td>8</td>
<td>double array</td>
</tr>
<tr>
<td>ans</td>
<td>1x1</td>
<td>140</td>
<td>sym object</td>
</tr>
<tr>
<td>b</td>
<td>1x1</td>
<td>8</td>
<td>double array</td>
</tr>
<tr>
<td>c</td>
<td>1x1</td>
<td>8</td>
<td>double array</td>
</tr>
<tr>
<td>v</td>
<td>3x3</td>
<td>982</td>
<td>sym object</td>
</tr>
</tbody>
</table>

a, b, and c are now variables of class double while A, E, S, and v remain symbolic expressions (class sym).

If you want to preserve a, b, and c as symbolic variables, but still alter their value within S, use this procedure.

```matlab
syms a b c
subs(S, {a, b, c}, {10, 2, 10})
```

ans =
8

Typing whos reveals that a, b, and c remain 1-by-1 sym objects.

The `subs` command can be combined with `double` to evaluate a symbolic expression numerically. Suppose we have

```matlab
syms t
M = (1-t^2)*exp(-1/2*t^2);
P = (1-t^2)*sech(t);
```

and want to see how M and P differ graphically.

One approach is to type
```matlab
ezplot(M); hold on; ezplot(P)
```
but this plot does not readily help us identify the curves. Instead, combine `subs`, `double`, and `plot`:

```matlab
T = -6:0.05:6;
MT = double(subs(M, t, T));
PT = double(subs(P, t, T));
plot(T, MT, 'b', T, PT, 'r-.');
title('');
legend('M', 'P');
xlabel('t'); grid
```

to produce a multicolored graph that indicates the difference between \( M \) and \( P \).
Finally the use of substitutions with strings greatly facilitates the solution of problems involving the Fourier, Laplace, or z-transforms.
Variable-Precision Arithmetic

Overview
There are three different kinds of arithmetic operations in this toolbox.

<table>
<thead>
<tr>
<th>Arithmetic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numeric</td>
<td>MATLAB’s floating-point arithmetic</td>
</tr>
<tr>
<td>Rational</td>
<td>Maple’s exact symbolic arithmetic</td>
</tr>
<tr>
<td>VPA</td>
<td>Maple’s variable-precision arithmetic</td>
</tr>
</tbody>
</table>

For example, the MATLAB statements
```
format long
1/2 + 1/3
```
use numeric computation to produce
```
0.8333333333333333333333333
```

With the Symbolic Math Toolbox, the statement
```
sym(1/2) + 1/3
```
uses symbolic computation to yield
```
5/6
```

And, also with the toolbox, the statements
```
digits(25)
vpa('1/2+1/3')
```
use variable-precision arithmetic to return
```
.8333333333333333333333333333333
```

The floating-point operations used by numeric arithmetic are the fastest of the three, and require the least computer memory, but the results are not exact. The number of digits in the printed output of MATLAB’s double quantities is controlled by the `format` statement, but the internal representation is always the eight-byte floating-point representation provided by the particular computer hardware.
In the computation of the numeric result above, there are actually three roundoff errors, one in the division of 1 by 3, one in the addition of 1/2 to the result of the division, and one in the binary to decimal conversion for the printed output. On computers that use IEEE floating-point standard arithmetic, the resulting internal value is the binary expansion of 5/6, truncated to 53 bits. This is approximately 16 decimal digits. But, in this particular case, the printed output shows only 15 digits.

The symbolic operations used by rational arithmetic are potentially the most expensive of the three, in terms of both computer time and memory. The results are exact, as long as enough time and memory are available to complete the computations.

Variable-precision arithmetic falls in between the other two in terms of both cost and accuracy. A global parameter, set by the function `digits`, controls the number of significant decimal digits. Increasing the number of digits increases the accuracy, but also increases both the time and memory requirements. The default value of `digits` is 32, corresponding roughly to floating-point accuracy.

The Maple documentation uses the term “hardware floating-point” for what we are calling “numeric” or “floating-point” and uses the term “floating-point arithmetic” for what we are calling “variable-precision arithmetic.”

**Example: Using the Different Kinds of Arithmetic**

**Rational Arithmetic**

By default, the Symbolic Math Toolbox uses rational arithmetic operations, i.e., Maple's exact symbolic arithmetic. Rational arithmetic is invoked when you create symbolic variables using the `sym` function.

The `sym` function converts a double matrix to its symbolic form. For example, if the double matrix is

\[
A =
\begin{bmatrix}
1.1000 & 1.2000 & 1.3000 \\
2.1000 & 2.2000 & 2.3000 \\
\end{bmatrix}
\]

its symbolic form, \( S = \text{sym}(A) \), is

\[
S = \begin{bmatrix}
\frac{11}{10}, & \frac{6}{5}, & \frac{13}{10}
\end{bmatrix}
\]
For this matrix \( A \), it is possible to discover that the elements are the ratios of small integers, so the symbolic representation is formed from those integers. On the other hand, the statement
\[
E = [\exp(1) \sqrt{2}; \log(3) \text{rand}]
\]
returns a matrix
\[
E =
\begin{bmatrix}
2.71828182845905 & 1.41421356237310 \\
1.09861228866811 & 0.21895918632809
\end{bmatrix}
\]
whose elements are not the ratios of small integers, so \( \text{sym}(E) \) reproduces the floating-point representation in a symbolic form.
\[
\begin{bmatrix}
306051325743037*2^{-50} & 3184525836262886*2^{-51} \\
2473854946935174*2^{-51} & 3944418039826132*2^{-54}
\end{bmatrix}
\]

**Variable-Precision Numbers**

Variable-precision numbers are distinguished from the exact rational representation by the presence of a decimal point. A power of 10 scale factor, denoted by \( 'e' \), is allowed. To use variable-precision instead of rational arithmetic, create your variables using the \texttt{vpa} function.

For matrices with purely double entries, the \texttt{vpa} function generates the representation that is used with variable-precision arithmetic. Continuing on with our example, and using \texttt{digits(4)}, applying \texttt{vpa} to the matrix \( S \)

\[
vpa(S)
\]

generates the output
\[
S =
\begin{bmatrix}
1.100 & 1.200 & 1.300 \\
2.100 & 2.200 & 2.300 \\
3.100 & 3.200 & 3.300
\end{bmatrix}
\]

and with \texttt{digits(25)}

\[
F = vpa(E)
\]
generates

\[
F = \\
[2.718281828459045534884808, 1.414213562373094923430017] \\
[1.098612288668110004152823, .2189591863280899719512718]
\]

**Converting to Floating-Point**

To convert a rational or variable-precision number to its MATLAB floating-point representation, use the `double` function.

In our example, both `double(sym(E))` and `double(vpa(E))` return `E`.

**Another Example**

The next example is perhaps more interesting. Start with the symbolic expression

\[
f = \text{sym}('\exp(pi*sqrt(163))')
\]

The statement

\[
\text{double}(f)
\]

produces the printed floating-point value

\[2.625374126407687e+17\]

Using the second argument of `vpa` to specify the number of digits,

\[
\text{vpa}(f,18)
\]

returns

\[262537412640768744.\]

whereas

\[
\text{vpa}(f,25)
\]

returns

\[262537412640768744.0000000\]

We suspect that `f` might actually have an integer value. This suspicion is reinforced by the 30 digit value, `vpa(f,30)`

\[262537412640768743.999999999999\]
Finally, the 40 digit value, \( vpa(f, 40) \)

\[
262537412640768743.9999999999992500725944
\]

shows that \( f \) is very close to, but not exactly equal to, an integer.
Linear Algebra

Basic Algebraic Operations

Basic algebraic operations on symbolic objects are the same as operations on MATLAB objects of class `double`. This is illustrated in the following example.

The Givens transformation produces a plane rotation through the angle \( t \). The statements

```matlab
syms t;
G = [cos(t) sin(t); -sin(t) cos(t)]
```

create this transformation matrix.

```matlab
G =
[cos(t), sin(t)]
[-sin(t), cos(t)]
```

Applying the Givens transformation twice should simply be a rotation through twice the angle. The corresponding matrix can be computed by multiplying \( G \) by itself or by raising \( G \) to the second power. Both

```matlab
A = G*G
```

and

```matlab
A = G^2
```

produce

```matlab
A =
[cos(t)^2-sin(t)^2, 2*cos(t)*sin(t)]
[-2*cos(t)*sin(t), cos(t)^2-sin(t)^2]
```

The `simple` function

```matlab
A = simple(A)
```

uses a trigonometric identity to return the expected form by trying several different identities and picking the one that produces the shortest representation.
A Givens rotation is an orthogonal matrix, so its transpose is its inverse. Confirming this by

\[ I = G.' \times G \]

which produces

\[
\begin{bmatrix}
\cos(t)^2 + \sin(t)^2 & 0 \\
0 & \cos(t)^2 + \sin(t)^2
\end{bmatrix}
\]

and then

\[ I = \text{simple}(I) \]

\[ I = \\
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\]

**Linear Algebraic Operations**

Let’s do several basic linear algebraic operations. 

The command

\[ H = \text{hilb}(3) \]

generates the 3-by-3 Hilbert matrix. With \text{format short}, MATLAB prints

\[
H = \\
\begin{bmatrix}
1.0000 & 0.5000 & 0.3333 \\
0.5000 & 0.3333 & 0.2500 \\
0.3333 & 0.2500 & 0.2000
\end{bmatrix}
\]

The computed elements of \( H \) are floating-point numbers that are the ratios of small integers. Indeed, \( H \) is a MATLAB array of class \text{double}. Converting \( H \) to a symbolic matrix

\[ H = \text{sym}(H) \]
gives

\[
\begin{bmatrix}
1 & 1/2 & 1/3 \\
1/2 & 1/3 & 1/4 \\
1/3 & 1/4 & 1/5
\end{bmatrix}
\]

This allows subsequent symbolic operations on \( H \) to produce results that correspond to the infinitely precise Hilbert matrix, \( \text{sym(hilb(3))} \), not its floating-point approximation, \( \text{hilb(3)} \). Therefore,

\[
\text{inv}(H)
\]

produces

\[
\begin{bmatrix}
9 & -36 & 30 \\
-36 & 192 & -180 \\
30 & -180 & 180
\end{bmatrix}
\]

and

\[
\text{det}(H)
\]

yields

1/2160

We can use the backslash operator to solve a system of simultaneous linear equations. The commands

\[
b = [1 1 1]' \\\nx = H\b \quad \% \text{Solve } Hx = b
\]

produce the solution

\[
\begin{bmatrix}
3 \\
-24 \\
30
\end{bmatrix}
\]

All three of these results, the inverse, the determinant, and the solution to the linear system, are the exact results corresponding to the infinitely precise, rational, Hilbert matrix. On the other hand, using \( \text{digits(16)} \), the command

\[
V = \text{vpa(hilb(3))}
\]
returns

\[
\begin{bmatrix}
1.00000000000000000000, & 0.50000000000000000000, & 0.33333333333333333333 \\
0.50000000000000000000, & 0.33333333333333333333, & 0.25000000000000000000 \\
0.33333333333333333333, & 0.25000000000000000000, & 0.20000000000000000000 \\
\end{bmatrix}
\]

The decimal points in the representation of the individual elements are the signal to use variable-precision arithmetic. The result of each arithmetic operation is rounded to 16 significant decimal digits. When inverting the matrix, these errors are magnified by the matrix condition number, which for hilb(3) is about 500. Consequently,

\[\text{inv}(V)\]

which returns

\[
\begin{bmatrix}
9.000000000000082, & -36.00000000000039, & 30.00000000000035 \\
-36.00000000000039, & 192.0000000000021, & -180.0000000000019 \\
30.00000000000035, & -180.0000000000019, & 180.0000000000019 \\
\end{bmatrix}
\]

shows the loss of two digits. So does

\[\text{det}(V)\]

which gives

\[.462962962962958e-3\]

and

\[V\backslash b\]

which is

\[
\begin{bmatrix}
3.000000000000041 \\
-24.000000000000021 \\
30.000000000000019 \\
\end{bmatrix}
\]

Since \(H\) is nonsingular, the null space of \(H\)

\[\text{null}(H)\]

and the column space of \(H\)

\[\text{colspace}(H)\]
produce an empty matrix and a permutation of the identity matrix, respectively. To make a more interesting example, let's try to find a value $s$ for $H(1,1)$ that makes $H$ singular. The commands

```matlab
syms s
H(1,1) = s
Z = det(H)
sol = solve(Z)
```

produce

$$
H = 
\begin{bmatrix}
  s & 1/2 & 1/3 \\
  1/2 & 1/3 & 1/4 \\
  1/3 & 1/4 & 1/5 \\
\end{bmatrix}
$$

$$
Z = 
\frac{1}{240} s - \frac{1}{270}
$$

$$
sol = \frac{8}{9}
$$

Then

$$
H = \text{subs}(H, s, sol)
$$

substitutes the computed value of $sol$ for $s$ in $H$ to give

$$
H = 
\begin{bmatrix}
  \frac{8}{9} & 1/2 & 1/3 \\
  1/2 & 1/3 & 1/4 \\
  1/3 & 1/4 & 1/5 \\
\end{bmatrix}
$$

Now, the command

```matlab
det(H)
```

returns

```
ans =
0
```

and

```matlab
inv(H)
```
Symbolic Math Toolbox

produces an error message

??? error using ==> inv
Error, (in inverse) singular matrix

because \( H \) is singular. For this matrix, \( Z = \text{null}(H) \) and \( C = \text{colspace}(H) \) are nontrivial.

\[
Z = 
\begin{bmatrix}
1 \\
4 \\
10/3 \\
\end{bmatrix}
\]

\[
C = 
\begin{bmatrix}
0 & 1 \\
1 & 0 \\
6/5 & -3/10 \\
\end{bmatrix}
\]

It should be pointed out that even though \( H \) is singular, \( \text{vpa}(H) \) is not. For any integer value \( d \), setting

\[
\text{digits}(d)
\]

and then computing

\[
\text{det(\text{vpa}(H))}
\]
\[
\text{inv(\text{vpa}(H))}
\]

results in a determinant of size \( 10^d \) and an inverse with elements on the order of \( 10^d \).

**Eigenvalues**

The symbolic eigenvalues of a square matrix \( A \) or the symbolic eigenvalues and eigenvectors of \( A \) are computed, respectively, using the commands

\[
E = \text{eig}(A)
\]
\[
[V, E] = \text{eig}(A)
\]

The variable-precision counterparts are

\[
E = \text{eig(\text{vpa}(A))}
\]
\[
[V, E] = \text{eig(\text{vpa}(A))}
\]
The eigenvalues of $A$ are the zeros of the characteristic polynomial of $A$, 
\[ \det(A - xI), \]
which is computed by
\[ \text{poly}(A). \]

The matrix $H$ from the last section provides our first example.

\[ H = \begin{bmatrix}
\frac{8}{9} & \frac{1}{2} & \frac{1}{3} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5}
\end{bmatrix} \]

The matrix is singular, so one of its eigenvalues must be zero. The statement
\[ [T, E] = \text{eig}(H) \]
produces the matrices $T$ and $E$. The columns of $T$ are the eigenvectors of $H$.

\[ T = \begin{bmatrix}
1, & \frac{28}{153} + 2\sqrt{12589}^{1/2}, & \frac{28}{153} - 2\sqrt{12589}^{12} \\
-4, & 1, & 1 \\
\frac{10}{3}, & \frac{92}{255} - 1\sqrt{12589}^{1/2}, & \frac{292}{255} + 1\sqrt{12589}^{12}
\end{bmatrix} \]

Similarly, the diagonal elements of $E$ are the eigenvalues of $H$.

\[ E = \begin{bmatrix}
0, & 0, & 0 \\
0, & \frac{32}{45} + \frac{1}{180}\sqrt{12589}^{1/2}, & 0 \\
0, & \frac{32}{45} - \frac{1}{180}\sqrt{12589}^{1/2}
\end{bmatrix} \]

It may be easier to understand the structure of the matrices of eigenvectors, $T$, and eigenvalues, $E$, if we convert $T$ and $E$ to decimal notation. We proceed as follows. The commands
\[ Td = \text{double}(T) \]
\[ Ed = \text{double}(E) \]
return

\[ Td = \begin{bmatrix}
1.0000 & 1.6497 & -1.2837 \\
-4.0000 & 1.0000 & 1.0000 \\
3.3333 & 0.7051 & 1.5851
\end{bmatrix} \]
Ed =

\[
\begin{bmatrix}
0 & 0 & 0 \\
0 & 1.3344 & 0 \\
0 & 0 & 0.0878
\end{bmatrix}
\]

The first eigenvalue is zero. The corresponding eigenvector (the first column of \( T_d \)) is the same as the basis for the null space found in the last section. The other two eigenvalues are the result of applying the quadratic formula to

\[ x^2 - \frac{64}{45}x + \frac{253}{2160} \]

which is the quadratic factor in \( \text{factor}(\text{poly}(H)) \).

```matlab
syms x
g = simple(factor(poly(H))/x);
solve(g)
```

Closed form symbolic expressions for the eigenvalues are possible only when the characteristic polynomial can be expressed as a product of rational polynomials of degree four or less. The Rosser matrix is a classic numerical analysis test matrix that happens to illustrate this requirement. The statement

\[
R = \text{sym}(\text{gallery('rosser'))}
\]

generates

\[
R =
\begin{bmatrix}
611 & 196 & -192 & 407 & -8 & -52 & -49 & 29 \\
196 & 899 & 113 & -192 & -71 & -43 & -8 & 44 \\
-192 & 113 & 899 & 196 & 61 & 49 & 8 & 52 \\
407 & -192 & 196 & 611 & 8 & 44 & 59 & -23 \\
-8 & -71 & 61 & 8 & 411 & -599 & 208 & 208 \\
-52 & -43 & 49 & 44 & -599 & 411 & 208 & 208 \\
-49 & -8 & 8 & 59 & 208 & 208 & 99 & -911 \\
29 & -44 & 52 & -23 & 208 & 208 & -911 & 99
\end{bmatrix}
\]

The commands

\[
p = \text{poly}(R);
\text{pretty}(	ext{factor}(p))
\]
produce
\[
x^2 (x - 1020) (x - 1020 x + 100) (x - 1040500) (x - 1000)
\]

The characteristic polynomial (of degree 8) factors nicely into the product of two linear terms and three quadratic terms. We can see immediately that four of the eigenvalues are 0, 1020, and a double root at 1000. The other four roots are obtained from the remaining quadratics. Use
\[
eig(R)
\]
to find all these values
\[
\begin{bmatrix}
0 \\
1020 \\
510 + 100 \cdot 26^{(1/2)} \\
510 - 100 \cdot 26^{(1/2)} \\
10 \cdot 10405^{(1/2)} \\
-10 \cdot 10405^{(1/2)} \\
1000 \\
1000
\end{bmatrix}
\]

The Rosser matrix is not a typical example; it is rare for a full 8-by-8 matrix to have a characteristic polynomial that factors into such simple form. If we change the two “corner” elements of \( R \) from 29 to 30 with the commands
\[
S = R; \quad S(1, 8) = 30; \quad S(8, 1) = 30;
\]
and then try
\[
p = poly(S)
\]
we find
\[
p =
40250968213600000 + 51264008540948000 x - 1082699388411166000 x^2 + 4287832912719760 x^3 - 5327831918568 x^4 + 82706090 x^5 + 5079941 x^6 - 4040 x^7 + x^8
\]

We also find that \( \text{factor}(p) \) is \( p \) itself. That is, the characteristic polynomial cannot be factored over the rationals.
For this modified Rosser matrix

\[ F = \text{eig}(S) \]

returns

\[
F = \\
\begin{bmatrix}
-1020.0532142558915165931894252600 \\
-0.17053529728768998575200874607757 \\
0.2180398054830160857564424981 \\
999.94691786044276755320289228602 \\
1000.1206982933841335712817075454 \\
1019.5243552632016358324933278291 \\
1019.9935501291629257348091808173 \\
1020.4201882015047278185457498840
\end{bmatrix}
\]

Notice that these values are close to the eigenvalues of the original Rosser matrix. Further, the numerical values of \( F \) are a result of Maple's floating-point arithmetic. Consequently, different settings of `digits` do not alter the number of digits to the right of the decimal place.

It is also possible to try to compute eigenvalues of symbolic matrices, but closed form solutions are rare. The Givens transformation is generated as the matrix exponential of the elementary matrix

\[ A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \]

The Symbolic Math Toolbox commands

```matlab
syms t
A = sym([0 1; -1 0]);
G = expm(t*A)
```

return

\[
\begin{bmatrix}
cos(t), & sin(t) \\
-sin(t), & cos(t)
\end{bmatrix}
\]

Next, the command

\[ g = \text{eig}(G) \]

produces
\[ g = \\
\begin{bmatrix}
\cos(t) + (\cos(t)^2 - 1)^{1/2} \\
\cos(t) - (\cos(t)^2 - 1)^{1/2}
\end{bmatrix}
\]

We can use `simple` to simplify this form of \( g \). Indeed, repeated application of `simple`

```matlab
for j = 1:4
 [g, how] = simple(g)
end
```

produces the best result

\[ g = \\
\begin{bmatrix}
\cos(t) + (-\sin(t)^2)^{1/2} \\
\cos(t) - (-\sin(t)^2)^{1/2}
\end{bmatrix}
\]

\[ \text{how} = \text{simplify} \]

\[ g = \\
\begin{bmatrix}
\cos(t) + i*\sin(t) \\
\cos(t) - i*\sin(t)
\end{bmatrix}
\]

\[ \text{how} = \text{radsimp} \]

\[ g = \\
\begin{bmatrix}
\exp(i*t) \\
1/\exp(i*t)
\end{bmatrix}
\]

\[ \text{how} = \text{convert(exp)} \]

\[ g = \\
\begin{bmatrix}
\exp(i*t) \\
\exp(-i*t)
\end{bmatrix}
\]

\[ \text{how} = \text{combine} \]
Notice the first application of `simple` uses `simplify` to produce a sum of sines and cosines. Next, `simple` invokes `radsimp` to produce $\cos(t) + i \sin(t)$ for the first eigenvector. The third application of `simple` uses `convert(exp)` to change the sines and cosines to complex exponentials. The last application of `simple` uses `simplify` to obtain the final form.

**Jordan Canonical Form**

The Jordan canonical form results from attempts to diagonalize a matrix by a similarity transformation. For a given matrix $A$, find a nonsingular matrix $V$, so that $V^{-1}AV$, or, more succinctly, $J = V^{-1}AV$, is “as close to diagonal as possible.” For almost all matrices, the Jordan canonical form is the diagonal matrix of eigenvalues and the columns of the transformation matrix are the eigenvectors. This always happens if the matrix is symmetric or if it has distinct eigenvalues. Some nonsymmetric matrices with multiple eigenvalues cannot be diagonalized. The Jordan form has the eigenvalues on its diagonal, but some of the superdiagonal elements are one, instead of zero. The statement

```
J = jordan(A)
```

computes the Jordan canonical form of $A$. The statement

```
[V, J] = jordan(A)
```

also computes the similarity transformation. The columns of $V$ are the generalized eigenvectors of $A$.

The Jordan form is extremely sensitive to perturbations. Almost any change in $A$ causes its Jordan form to be diagonal. This makes it very difficult to compute the Jordan form reliably with floating-point arithmetic. It also implies that $A$ must be known exactly (i.e., without round-off error, etc.). Its elements must be integers, or ratios of small integers. In particular, the variable-precision calculation, $\text{jordan(vpa}(A))$, is not allowed.

For example, let

```
A = sym([12, 32, 66, 116; -25, -76, -164, -294; 21, 66, 143, 256; -6, -19, -41, -73])
```

```
A =
[12, 32, 66, 116]
[-25, -76, -164, -294]
[21, 66, 143, 256]
[-6, -19, -41, -73]
```
Then

\[ [V, J] = \text{Jordan}(A) \]

produces

\[
V = \\
\begin{bmatrix}
4 & -2 & 4 & 3 \\
-6 & 8 & -11 & -8 \\
4 & -7 & 10 & 7 \\
-1 & 2 & -3 & -2
\end{bmatrix}
\]

\[
J = \\
\begin{bmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 2
\end{bmatrix}
\]

Therefore \( A \) has a double eigenvalue at 1, with a single Jordan block, and a double eigenvalue at 2, also with a single Jordan block. The matrix has only two eigenvectors, \( V(:,1) \) and \( V(:,3) \). They satisfy

\[
A*V(:,1) = 1*V(:,1) \\
A*V(:,3) = 2*V(:,3)
\]

The other two columns of \( V \) are generalized eigenvectors of grade 2. They satisfy

\[
A*V(:,2) = 1*V(:,2) + V(:,1) \\
A*V(:,4) = 2*V(:,4) + V(:,3)
\]

In mathematical notation, with \( v_j = v(:,j) \), the columns of \( V \) and eigenvalues satisfy the relationships

\[
(A - \lambda_2 I)v_4 = v_3
\]

\[
(A - \lambda_1 I)v_2 = v_1
\]
Singular Value Decomposition

Only the variable-precision numeric computation of the singular value decomposition is available in the toolbox. One reason for this is that the formulas that result from symbolic computation are usually too long and complicated to be of much use. If \( A \) is a symbolic matrix of floating-point or variable-precision numbers, then

\[
S = \text{svd}(A)
\]

computes the singular values of \( A \) to an accuracy determined by the current setting of \texttt{digits}. And

\[
[U, S, V] = \text{svd}(A);
\]

produces two orthogonal matrices, \( U \) and \( V \), and a diagonal matrix, \( S \), so that

\[
A = U*S*V';
\]

Let's look at the \( n \)-by-\( n \) matrix \( A \) with elements defined by

\[
A(i,j) = \frac{1}{i-j+\frac{1}{2}}
\]

For \( n = 5 \), the matrix is

\[
\begin{bmatrix}
2 & -2 & -2/3 & -2/5 & -2/7 \\
2/3 & 2 & -2 & -2/3 & -2/5 \\
2/5 & 2/3 & 2 & -2 & -2/3 \\
2/7 & 2/5 & 2/3 & 2 & -2 \\
2/9 & 2/7 & 2/5 & 2/3 & 2
\end{bmatrix}
\]

It turns out many of the singular values of these matrices are close to \( \pi \).

The most obvious way of generating this matrix is

```matlab
for i=1:n
 for j=1:n
 A(i,j) = sym(1/(i-j+1/2));
 end
end
```

The most efficient way to generate the matrix is

```matlab
[J,I] = meshgrid(1:n);
A = sym(1./(I - J+1/2));
```
Since the elements of $A$ are the ratios of small integers, $\text{vpa}(A)$ produces a variable-precision representation, which is accurate to $\text{digits}$ precision. Hence

$$S = \text{svd}(\text{vpa}(A))$$

computes the desired singular values to full accuracy. With $n = 16$ and $\text{digits}(30)$, the result is

$$S =$$

$$\begin{bmatrix}
1.20968137605668985332455685357 \\
2.69162158686066606774782763594 \\
3.07790297231119748658424727354 \\
3.13504054399744654843898901261 \\
3.14106044663470063805218371924 \\
3.14155754359918083691050658260 \\
3.14159075458605848728982577119 \\
3.14159256925492306470284863102 \\
3.14159265052654880815569479613 \\
3.1415926534996105314385683564 \\
3.1415926538767361712392612384 \\
3.1415926538975439206849907220 \\
3.1415926538979270342635559051 \\
3.1415926538979323325290142781 \\
3.1415926538979323843066846712 \\
3.1415926538979323846255035974
\end{bmatrix}$$

There are two ways to compare $S$ with $\pi$, the floating-point representation of $\pi$. In the vector below, the first element is computed by subtraction with variable-precision arithmetic and then converted to a double. The second element is computed with floating-point arithmetic.

```plaintext
format short e
[double(pi*ones(16,1)-S) pi-double(S)]
```

The results are

$$\begin{array}{cc}
1.9319e+00 & 1.9319e+00 \\
4.4997e-01 & 4.4997e-01 \\
6.3690e-02 & 6.3690e-02 \\
6.5521e-03 & 6.5521e-03 \\
5.3221e-04 & 5.3221e-04 \\
3.5110e-05 & 3.5110e-05 \\
1.8990e-06 & 1.8990e-06 \\
\end{array}$$
Since the relative accuracy of \( \pi \) is \( \pi \times \text{eps} \), which is 6.9757e-16, either column confirms our suspicion that four of the singular values of the 16-by-16 example equal \( \pi \) to floating-point accuracy.

**Eigenvalue Trajectories**

This example applies several numeric, symbolic, and graphic techniques to study the behavior of matrix eigenvalues as a parameter in the matrix is varied. This particular setting involves numerical analysis and perturbation theory, but the techniques illustrated are more widely applicable.

In this example, we consider a 3-by-3 matrix \( A \) whose eigenvalues are 1, 2, 3. First, we perturb \( A \) by another matrix \( E \) and parameter \( t \): \( A \rightarrow A + tE \). As \( t \) increases from 0 to \( 10^{-6} \), the eigenvalues \( \lambda_1 = 1, \lambda_2 = 2, \lambda_3 = 3 \) change to \( \lambda_1' \approx 1.5596 + 0.2726i, \lambda_2' \approx 1.5596 - 0.2726i, \lambda_3' \approx 2.8808 \).
This, in turn, means that for some value of $t = \tau$, $0 < \tau < 10^{-6}$, the perturbed matrix $A(t) = A + tE$ has a double eigenvalue $\lambda_1 = \lambda_2$.

Let's find the value of $t$, called $\tau$, where this happens.

The starting point is a MATLAB test example, known as `gallery(3)`.

```matlab
A = gallery(3)
A =
 149 -50 -154
 -27 9 -25
 537 180 546
```

This is an example of a matrix whose eigenvalues are sensitive to the effects of roundoff errors introduced during their computation. The actual computed eigenvalues may vary from one machine to another, but on a typical workstation, the statements...
Symbolic Math Toolbox

format long
e = eig(A)

produce

e =
0.99999999999642
2.00000000000579
2.99999999999780

Of course, the example was created so that its eigenvalues are actually 1, 2, and 3. Note that three or four digits have been lost to roundoff. This can be easily verified with the toolbox. The statements

B = sym(A);
e = eig(B)'
p = poly(B)
f = factor(p)

produce

e =
[1, 2, 3]

p =
x^3 - 6*x^2 + 11*x - 6

f =
(x-1)*(x-2)*(x-3)

Are the eigenvalues sensitive to the perturbations caused by roundoff error because they are “close together”? Ordinarily, the values 1, 2, and 3 would be regarded as “well separated.” But, in this case, the separation should be viewed on the scale of the original matrix. If \( A \) were replaced by \( A/1000 \), the eigenvalues, which would be .001, .002, .003, would “seem” to be closer together.

But eigenvalue sensitivity is more subtle than just “closeness.” With a carefully chosen perturbation of the matrix, it is possible to make two of its eigenvalues coalesce into an actual double root that is extremely sensitive to roundoff and other errors.
One good perturbation direction can be obtained from the outer product of the left and right eigenvectors associated with the most sensitive eigenvalue. The following statement creates

\[ E = \begin{bmatrix} 130 & -390 & 0 \\ 43 & -129 & 0 \\ 133 & -399 & 0 \end{bmatrix} \]

the perturbation matrix

\[
E = \\
130 & -390 & 0 \\
43 & -129 & 0 \\
133 & -399 & 0
\]

The perturbation can now be expressed in terms of a single, scalar parameter \( t \). The statements

\[
\text{syms } x \ t \\
A = A + t \cdot E
\]

replace \( A \) with the symbolic representation of its perturbation.

\[
A = \\
\begin{bmatrix} -149 + 130 \cdot t & -50 \cdot 390 \cdot t & -154 \\
537 + 43 \cdot t & 180 \cdot 129 \cdot t & 546 \\
-27 + 133 \cdot t & -9 \cdot 399 \cdot t & -25 \end{bmatrix}
\]

Computing the characteristic polynomial of this new \( A \)

\[
p = \text{poly}(A)
\]

gives

\[
p = \\
x^3 - 6 \cdot x^2 + (492512 \cdot t + 11) \cdot x \cdot 6 \cdot 1221271 \cdot t
\]

Prettyprinting

\[
\text{pretty(collect(p,x))}
\]

shows more clearly that \( p \) is a cubic in \( x \) whose coefficients vary linearly with \( t \).

\[
x^3 + (-t - 6) \cdot x^2 + (492512 \cdot t + 11) \cdot x \cdot 6 \cdot 1221271 \cdot t
\]

It turns out that when \( t \) is varied over a very small interval, from 0 to 1.0e-6, the desired double root appears. This can best be seen graphically. The first
figure shows plots of \( p \), considered as a function of \( x \), for three different values of \( t: t = 0, t = 0.5e-6, \) and \( t = 1.0e-6. \) For each value, the eigenvalues are computed numerically and also plotted.

\[
x = .8:.01:3.2;
\text{for } k = 0:2
\begin{align*}
    c &= \text{sym2poly} ( \text{subs} (p, t, k*0.5e-6) ); \\
    y &= \text{polyval} (c, x); \\
    \text{lambda} &= \text{eig} (\text{double} ( \text{subs} (A, t, k*0.5e-6) )); \\
    \text{subplot} (3,1,3-k)
\end{align*}
\text{plot}(x, y, '-', x, 0*x, ':', \text{lambda}, 0*\text{lambda}, 'o')
\text{axis}([.8 3.2 -.5 .5])
\text{text}(2.25,.35,[\text{'t = ' num2str(k*0.5e-6)])};
\end{align*}
\]

The bottom subplot shows the unperturbed polynomial, with its three roots at 1, 2, and 3. The middle subplot shows the first two roots approaching each
other. In the top subplot, these two roots have become complex and only one real root remains.

The next statements compute and display the actual eigenvalues

```matlab
e = eig(A);
pretty(e)
```

showing that `e(2)` and `e(3)` form a complex conjugate pair.

```matlab
[[1/3]
 [1/3 %1 - 3 %2 + 2 + 1/3 t]
 [[1/3]
 [1/3 1/2 1/3]
 [- 1/6 %1 + 3/2 %2 + 2 + 1/3 t + 1/2 i 3 (1/3 %1 + 3 %2)]
 [[1/3]
 [1/3 1/2 1/3]
 [- 1/6 %1 + 3/2 %2 + 2 + 1/3 t - 1/2 i 3 (1/3 %1 + 3 %2)]
]
]
%1 := 3189393 t - 2216286 t^2 + t^3 + 3 (-3 + 4432572 t^2
 - 1052829647418 t + 358392752910068940 t^4 1/2
 - 181922388795 t)

 %2 := ---------------------------
 1/3 %1
%2 := ---------------------------
 1/3 %1
%1
Next, the symbolic representations of the three eigenvalues are evaluated at many values of `t`

```matlab
tvals = (2:-.02:0) * 1.e-6;
r = size(tvals,1);
c = size(e,1);
lambda = zeros(r,c);
for k = 1:c
    lambda(:,k) = double(subs(e(k),t,tvals));
end
```
Above $t = 0.8e^{-6}$, the graphs of two of the eigenvalues intersect, while below $t = 0.8e^{-6}$, two real roots become a complex conjugate pair. What is the precise value of t that marks this transition? Let τ denote this value of t.

One way to find τ is based on the fact that, at a double root, both the function and its derivative must vanish. This results in two polynomial equations to be solved for two unknowns. The statement

```matlab
sol = solve(p, diff(p, 'x'))
```

solves the pair of algebraic equations $p = 0$ and $dp/dx = 0$ and produces
\[\text{sol} = \]
\[
\begin{align*}
\text{t}: & [4x1 \text{ sym}] \\
\text{x}: & [4x1 \text{ sym}] \\
\end{align*}
\]

Find \(\tau \) now by

\[\tau = \text{double}(\text{sol}.t(2)) \]

which reveals that the second element of \(\text{sol}.t \) **is the desired value of** \(\tau \).

\[
\text{format short} \\
\tau = \\
7.8379e-07
\]

Therefore, the second element of \(\text{sol}.x \)

\[\sigma = \text{double}(\text{sol}.x(2)) \]

is the double eigenvalue

\[
\sigma = \\
1.5476
\]

Let’s verify that this value of \(\tau \) **does indeed produce a double eigenvalue at** \(\sigma = 1.5476 \). **To achieve this, substitute** \(\tau \) **for** \(t \) **in the perturbed matrix**

\[A(t) = A + tE \]

and find the eigenvalues of \(A(t) \). **That is,**

\[e = \text{eig(double(subs(A, t, \tau)))} \]

\[
e = \\
1.5476 \\
1.5476 \\
2.9047
\]

confirms that \(\sigma = 1.5476 \) **is a double eigenvalue of** \(A(t) \) **for** \(t = 7.8379e-07 \).
Solving Equations

Solving Algebraic Equations

If \(S \) is a symbolic expression,

\[
\text{solve}(S)
\]

attempts to find values of the symbolic variable in \(S \) (as determined by \text{findsym}) for which \(S \) is zero. For example,

\[
\begin{align*}
\text{syms} & \quad a \quad b \quad c \quad x \\
S & \quad = \quad a \cdot x^2 + b \cdot x + c; \\
\text{solve}(S)
\end{align*}
\]

uses the familiar quadratic formula to produce

\[
\text{ans} = \begin{bmatrix}
\frac{1}{2}a \cdot (-b + (b^2 - 4 \cdot a \cdot c)^{1/2}) \\
\frac{1}{2}a \cdot (-b - (b^2 - 4 \cdot a \cdot c)^{1/2})
\end{bmatrix}
\]

This is a symbolic vector whose elements are the two solutions.

If you want to solve for a specific variable, you must specify that variable as an additional argument. For example, if you want to solve \(S \) for \(b \), use the command

\[
b = \text{solve}(S,b)
\]

which returns

\[
b = \frac{-(a \cdot x^2 + c)}{x}
\]

Note that these examples assume equations of the form \(f(x) = 0 \). If you need to solve equations of the form \(f(x) = q(x) \), you must use quoted strings. In particular, the command

\[
s = \text{solve}('\cos(2 \cdot x) + \sin(x) = 1')
\]

returns a vector with four solutions.
s =
[0]
[pi]
[1/6*pi]
[5/6*pi]

Several Algebraic Equations
Now let’s look at systems of equations. Suppose we have the system

\[x^2 y^2 = 0 \]
\[x - \frac{y}{2} = \alpha \]

and we want to solve for \(x \) and \(y \). First create the necessary symbolic objects.

```
syms x y alpha
```

There are several ways to address the output of \texttt{solve}. One is to use a two-output call

```
[x, y] = solve(x^2*y^2, x - y/2 - alpha)
```

which returns

\[
\begin{align*}
x &= \\
[0] & [0] & [\alpha] & [\alpha]
\end{align*}
\]

\[
\begin{align*}
y &= \\
\end{align*}
\]

Consequently, the solution vector

\(v = [x, y] \)
appears to have redundant components. This is due to the first equation \(x^2 y^2 = 0 \), which has two solutions in \(x \) and \(y \): \(x = \pm 0, \ y = \pm 0 \). Changing the equations to

\[
eqs1 = 'x^2 y^2=1, \ x-y/2=alpha'
\]

\[
[x, y] = \text{solve}(\eqs1)
\]

produces four distinct solutions.

\[
x = \\
[1/2*alpha+1/2*(alpha^2+2)^(1/2)] \\
[1/2*alpha-1/2*(alpha^2+2)^(1/2)] \\
[1/2*alpha+1/2*(alpha^2-2)^(1/2)] \\
[1/2*alpha-1/2*(alpha^2-2)^(1/2)]
\]

\[
y = \\
[-alpha+(alpha^2+2)^(1/2)] \\
[-alpha-(alpha^2+2)^(1/2)] \\
[-alpha+(alpha^2-2)^(1/2)] \\
[-alpha-(alpha^2-2)^(1/2)]
\]

Since we did not specify the dependent variables, \texttt{solve} uses \texttt{findsym} to determine the variables.

This way of assigning output from \texttt{solve} is quite successful for “small” systems. Plainly, if we had, say, a 10-by-10 system of equations, typing

\[
[x1, x2, x3, x4, x5, x6, x7, x8, x9, x10] = \text{solve}(...)
\]

is both awkward and time consuming. To circumvent this difficulty, \texttt{solve} can return a structure whose fields are the solutions. In particular, consider the system \(u^2 - v^2 = a^2, \ u + v = 1, a^2 - 2a = 3 \). The command

\[
S = \text{solve}('u^2 - v^2 = a^2', 'u + v = 1', 'a^2 - 2a = 3')
\]

returns

\[
S = \\
a: [2x1 sym] \\
u: [2x1 sym] \\
v: [2x1 sym]
\]
The solutions for a reside in the “a-field” of S. That is, $S.a$

produces

\[
\text{ans =}
\begin{bmatrix}
-1 \\
3
\end{bmatrix}
\]

Similar comments apply to the solutions for u and v. The structure S can now be manipulated by field and index to access a particular portion of the solution. For example, if we want to examine the second solution, we can use the following statement

\[
s2 = [S.a(2), S.u(2), S.v(2)]
\]

to extract the second component of each field.

\[
s2 =
\begin{bmatrix}
3 \\
5 \\
-4
\end{bmatrix}
\]

The following statement

\[
M = [S.a, S.u, S.v]
\]

creates the solution matrix M

\[
M =
\begin{bmatrix}
-1 & 1 & 0 \\
3 & 5 & -4
\end{bmatrix}
\]

whose rows comprise the distinct solutions of the system.

Linear systems of simultaneous equations can also be solved using matrix division. For example,

```matlab
clear u v x y
syms u v x y
S = solve(x+2*y-u, 4*x+5*y-v);
sol = [S.x;S.y]
```

and
Symbolic Math Toolbox

```
A = [1 2; 4 5];
b = [u; v];
z = A\b

result in

sol =

[-5/3*u + 2/3*v]
[4/3*u - 1/3*v]

z =

[-5/3*u + 2/3*v]
[4/3*u - 1/3*v]
```

Thus `s` and `z` produce the same solution, although the results are assigned to different variables.

Single Differential Equation

The function `dsolve` computes symbolic solutions to ordinary differential equations. The equations are specified by symbolic expressions containing the letter `D` to denote differentiation. The symbols `D2`, `D3`, ..., `DN`, correspond to the second, third, ..., Nth derivative, respectively. Thus, `D2y` is the Symbolic Math Toolbox equivalent of `d^2y/dt^2`. The dependent variables are those preceded by `D` and the default independent variable is `t`. Note that names of symbolic variables should not contain `D`. The independent variable can be changed from `t` to some other symbolic variable by including that variable as the last input argument.

Initial conditions can be specified by additional equations. If initial conditions are not specified, the solutions contain constants of integration, `C1`, `C2`, etc.

The output from `dsolve` parallels the output from `solve`. That is, you can call `dsolve` with the number of output variables equal to the number of dependent variables or place the output in a structure whose fields contain the solutions of the differential equations.

Example 1

The following call to `dsolve`

```
dsolve('Dy=1+y^2')
```
uses y as the dependent variable and t as the default independent variable. The output of this command is

$$\text{ans} = \tan(t+C1)$$

To specify an initial condition, use

$$y = \text{dsolve}(\text{'Dy}=1+y^2', \text{'y(0)=1'})$$

This produces

$$y = \tan(t+1/4\pi)$$

Notice that y is in the MATLAB workspace, but the independent variable t is not. Thus, the command $\text{diff}(y,t)$ returns an error. To place t in the workspace, type syms t.

Example 2
Nonlinear equations may have multiple solutions, even when initial conditions are given.

$$x = \text{dsolve}(\text{'(Dx)^2'+x^2}=1', \text{'x(0)=0'})$$

results in

$$x = \begin{bmatrix} -\sin(t) \\ \sin(t) \end{bmatrix}$$

Example 3
Here is a second order differential equation with two initial conditions. The commands

$$y = \text{dsolve}(\text{'D2y}=\cos(2*x)'}, \text{'y(0)=1'}, \text{'Dy(0)=0'}, \text{'x'})$$

$$\text{simplify}(y)$$

produce

$$y = -2/3\cos(x)^2+1/3+4/3\cos(x)$$
The key issues in this example are the order of the equation and the initial conditions. To solve the ordinary differential equation

\[
\frac{d^3 u}{dx^3} = u
\]

\[u(0) = 1, \ u'(0) = -1, \ u''(0) = \pi\]

simply type

\[u = \text{dsolve}('D3u=u','u(0)=1','Du(0)=-1','D2u(0) = \pi','x')\]

Use \(D3u\) to represent \(\frac{d^3 u}{dx^3}\) and \(D2u(0)\) for \(u''(0)\).

Several Differential Equations

The function \(\text{dsolve}\) can also handle several ordinary differential equations in several variables, with or without initial conditions. For example, here is a pair of linear, first order equations.

\[S = \text{dsolve}('Df = 3*f+4*g', 'Dg = -4*f+3*g')\]

The computed solutions are returned in the structure \(S\). You can determine the values of \(f\) and \(g\) by typing

\[f = S.f\]

\[g = S.g\]

If you prefer to recover \(f\) and \(g\) directly as well as include initial conditions, type

\[\[f, g\] = \text{dsolve}('Df=3*f+4*g', 'Dg = -4*f+3*g', 'f(0) = 0, g(0) = 1')\]

\[f = \exp(3*t)*\sin(4*t)\]

\[g = \exp(3*t)*\cos(4*t)\]
This table details some examples and Symbolic Math Toolbox syntax. Note that the final entry in the table is the Airy differential equation whose solution is referred to as the Airy function.

<table>
<thead>
<tr>
<th>Differential Equation</th>
<th>MATLAB Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{dy}{dt} + 4y(t) = e^{-t})</td>
<td>(y = \text{dsolve('Dy+4*y = exp(-t)', 'y(0) = 1')})</td>
</tr>
<tr>
<td>(y(0) = 1)</td>
<td></td>
</tr>
<tr>
<td>(\frac{d^2 y}{dx^2} + 4y(x) = e^{-2x})</td>
<td>(y = \text{dsolve('D2y+4y = exp(-2x)', 'y(0)=0', 'y(pi) = 0', 'x')})</td>
</tr>
<tr>
<td>(y(0) = 0, y(\pi) = 0)</td>
<td></td>
</tr>
<tr>
<td>(\frac{d^2 y}{dx^2} = xy(x))</td>
<td>(y = \text{dsolve('D2y = xy', 'y(0) = 0', 'y(3) = \text{besselk}(1/3, 2sqrt(3))/pi', 'x')})</td>
</tr>
<tr>
<td>(y(0) = 0, y(3) = \frac{1}{\pi}K_{1/3}(2\sqrt{3}))</td>
<td></td>
</tr>
<tr>
<td>(The Airy Equation)</td>
<td></td>
</tr>
</tbody>
</table>

The Airy function plays an important role in the mathematical modeling of the dispersion of water waves.
MATLAB Quick Reference

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>A-2</td>
</tr>
<tr>
<td>General Purpose Commands</td>
<td>A-3</td>
</tr>
<tr>
<td>Operators and Special Characters</td>
<td>A-5</td>
</tr>
<tr>
<td>Logical Functions</td>
<td>A-5</td>
</tr>
<tr>
<td>Language Constructs and Debugging</td>
<td>A-5</td>
</tr>
<tr>
<td>Elementary Matrices and Matrix Manipulation</td>
<td>A-7</td>
</tr>
<tr>
<td>Specialized Matrices</td>
<td>A-8</td>
</tr>
<tr>
<td>Elementary Math Functions</td>
<td>A-8</td>
</tr>
<tr>
<td>Specialized Math Functions</td>
<td>A-9</td>
</tr>
<tr>
<td>Coordinate System Conversion</td>
<td>A-10</td>
</tr>
<tr>
<td>Matrix Functions - Numerical Linear Algebra</td>
<td>A-10</td>
</tr>
<tr>
<td>Data Analysis and Fourier Transform Functions</td>
<td>A-11</td>
</tr>
<tr>
<td>Polynomial and Interpolation Functions</td>
<td>A-12</td>
</tr>
<tr>
<td>Function Functions - Nonlinear Numerical Methods</td>
<td>A-13</td>
</tr>
<tr>
<td>Sparse Matrix Functions</td>
<td>A-14</td>
</tr>
<tr>
<td>Sound Processing Functions</td>
<td>A-15</td>
</tr>
<tr>
<td>Character String Functions</td>
<td>A-16</td>
</tr>
<tr>
<td>File I/O Functions</td>
<td>A-17</td>
</tr>
<tr>
<td>Bitwise Functions</td>
<td>A-17</td>
</tr>
<tr>
<td>Structure Functions</td>
<td>A-18</td>
</tr>
<tr>
<td>MATLAB Object Functions</td>
<td>A-18</td>
</tr>
<tr>
<td>MATLAB Interface to Java Functions</td>
<td>A-18</td>
</tr>
<tr>
<td>Cell Array Functions</td>
<td>A-19</td>
</tr>
<tr>
<td>Multidimensional Array Functions</td>
<td>A-19</td>
</tr>
<tr>
<td>Data Visualization</td>
<td>A-19</td>
</tr>
<tr>
<td>Graphical User Interfaces</td>
<td>A-24</td>
</tr>
<tr>
<td>Serial Port I/O</td>
<td>A-25</td>
</tr>
</tbody>
</table>
Introduction

This appendix lists the MATLAB functions as they are grouped in Help by subject. Each table contains the function names and brief descriptions. For complete information about any of these functions, refer to Help and either:

- Select the function from the MATLAB Function Reference (Functions by Category or Alphabetical List of Functions), or
- From the Search tab in the Help Navigator, select Function Name as Search type, type the function name in the Search for field, and click Go.

Note If you are viewing this book from Help, you can click on any function name and jump directly to the corresponding MATLAB function page.
General Purpose Commands

This set of functions lets you start and stop MATLAB, work with files and the operating system, control the command window, and manage the environment, variables, and the workspace.

Managing Commands and Functions

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>addpath</td>
<td>Add directories to MATLAB's search path</td>
</tr>
<tr>
<td>doc</td>
<td>Display HTML documentation in Help browser</td>
</tr>
<tr>
<td>docopt</td>
<td>Display location of help file directory for UNIX platforms</td>
</tr>
<tr>
<td>genpath</td>
<td>Generate a path string</td>
</tr>
<tr>
<td>help</td>
<td>Display M-file help for MATLAB functions in the Command Window</td>
</tr>
<tr>
<td>helpbrowser</td>
<td>Display Help browser for access to all MathWorks online help</td>
</tr>
<tr>
<td>helpdesk</td>
<td>Display Help browser</td>
</tr>
<tr>
<td>helpwin</td>
<td>Display M-file help and provide access to M-file help for all functions</td>
</tr>
<tr>
<td>lasterr</td>
<td>Last error message</td>
</tr>
<tr>
<td>lastwarn</td>
<td>Last warning message</td>
</tr>
<tr>
<td>license</td>
<td>Show MATLAB license number</td>
</tr>
<tr>
<td>lookfor</td>
<td>Search for specified keyword in M-file help entries</td>
</tr>
<tr>
<td>partialpath</td>
<td>Partial pathname</td>
</tr>
<tr>
<td>path</td>
<td>Control MATLAB's directory search path</td>
</tr>
<tr>
<td>pathtool</td>
<td>Open the GUI for viewing and modifying MATLAB’s path</td>
</tr>
<tr>
<td>profile</td>
<td>Start the M-file profiler, a utility for debugging and optimizing code</td>
</tr>
<tr>
<td>profreport</td>
<td>Generate a profile report</td>
</tr>
<tr>
<td>rehash</td>
<td>Refresh function and file system caches</td>
</tr>
<tr>
<td>rmpath</td>
<td>Remove directories from MATLAB's search path</td>
</tr>
<tr>
<td>support</td>
<td>Open MathWorks Technical Support Web page</td>
</tr>
<tr>
<td>type</td>
<td>List file</td>
</tr>
<tr>
<td>ver</td>
<td>Display version information for MATLAB, Simulink, and toolboxes</td>
</tr>
<tr>
<td>version</td>
<td>Get MATLAB version number</td>
</tr>
<tr>
<td>web</td>
<td>Point Help browser or Web browser at file or Web site</td>
</tr>
<tr>
<td>what</td>
<td>List MATLAB-specific files in current directory</td>
</tr>
<tr>
<td>whatsnew</td>
<td>Display README files for MATLAB and toolboxes</td>
</tr>
<tr>
<td>which</td>
<td>Locate functions and files</td>
</tr>
</tbody>
</table>

Managing Variables and the Workspace

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clear</td>
<td>Remove items from the workspace</td>
</tr>
<tr>
<td>disp</td>
<td>Display text or array</td>
</tr>
<tr>
<td>length</td>
<td>Length of vector</td>
</tr>
<tr>
<td>load</td>
<td>Retrieve variables from disk</td>
</tr>
<tr>
<td>memory</td>
<td>Help for memory limitations</td>
</tr>
<tr>
<td>mlock</td>
<td>Prevent M-file clearing</td>
</tr>
<tr>
<td>munlock</td>
<td>Allow M-file clearing</td>
</tr>
<tr>
<td>openvar</td>
<td>Open workspace variable in Array Editor for graphical editing</td>
</tr>
<tr>
<td>pack</td>
<td>Consolidate workspace memory</td>
</tr>
<tr>
<td>save</td>
<td>Save workspace variables on disk</td>
</tr>
<tr>
<td>saveas</td>
<td>Save figure or model using specified format</td>
</tr>
</tbody>
</table>
Managing Variables and the Workspace (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>size</code></td>
<td>Array dimensions</td>
</tr>
<tr>
<td><code>who</code>, <code>whos</code></td>
<td>List the variables in the workspace</td>
</tr>
<tr>
<td><code>workspace</code></td>
<td>Display the Workspace browser, a GUI for managing the workspace</td>
</tr>
</tbody>
</table>

Controlling the Command Window

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>clc</code></td>
<td>Clear Command Window</td>
</tr>
<tr>
<td><code>echo</code></td>
<td>Echo M-files during execution</td>
</tr>
<tr>
<td><code>format</code></td>
<td>Control the display format for output</td>
</tr>
<tr>
<td><code>home</code></td>
<td>Move cursor to upper left corner of Command Window</td>
</tr>
<tr>
<td><code>more</code></td>
<td>Control paged output for the command window</td>
</tr>
</tbody>
</table>

Working with Files and the Operating Environment (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>filebrowser</code></td>
<td>Display Current Directory browser, for viewing files</td>
</tr>
<tr>
<td><code>fullfile</code></td>
<td>Build full filename from parts</td>
</tr>
<tr>
<td><code>info</code></td>
<td>Display contact information or toolbox Readme files</td>
</tr>
<tr>
<td><code>inmem</code></td>
<td>Functions in memory</td>
</tr>
<tr>
<td><code>ls</code></td>
<td>List directory on UNIX</td>
</tr>
<tr>
<td><code>matlabroot</code></td>
<td>Get root directory of MATLAB installation</td>
</tr>
<tr>
<td><code>mkdir</code></td>
<td>Make new directory</td>
</tr>
<tr>
<td><code>open</code></td>
<td>Open files based on extension</td>
</tr>
<tr>
<td><code>pwd</code></td>
<td>Display current directory</td>
</tr>
<tr>
<td><code>tempdir</code></td>
<td>Return the name of the system’s temporary directory</td>
</tr>
<tr>
<td><code>tempname</code></td>
<td>Unique name for temporary file</td>
</tr>
<tr>
<td><code>undocheckout</code></td>
<td>Undo previous checkout from source control system</td>
</tr>
<tr>
<td><code>unix</code></td>
<td>Execute a UNIX command and return the result</td>
</tr>
<tr>
<td><code>!</code></td>
<td>Execute operating system command</td>
</tr>
</tbody>
</table>

Working with Files and the Operating Environment

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>beep</code></td>
<td>Produce a beep sound</td>
</tr>
<tr>
<td><code>cd</code></td>
<td>Change working directory</td>
</tr>
<tr>
<td><code>checkin</code></td>
<td>Check file into source control system</td>
</tr>
<tr>
<td><code>checkout</code></td>
<td>Check file out of source control system</td>
</tr>
<tr>
<td><code>cmopts</code></td>
<td>Get name of source control system, and PVCS project filename</td>
</tr>
<tr>
<td><code>copyfile</code></td>
<td>Copy file</td>
</tr>
<tr>
<td><code>customverctrl</code></td>
<td>Allow custom source control system</td>
</tr>
<tr>
<td><code>delete</code></td>
<td>Delete files and graphics objects</td>
</tr>
<tr>
<td><code>diary</code></td>
<td>Save session to a disk file</td>
</tr>
<tr>
<td><code>dir</code></td>
<td>Display a directory listing</td>
</tr>
<tr>
<td><code>edit</code></td>
<td>Edit an M-file</td>
</tr>
<tr>
<td><code>filebrowser</code></td>
<td>Display Current Directory browser, for viewing files</td>
</tr>
</tbody>
</table>

Starting and Quitting MATLAB

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>finish</code></td>
<td>MATLAB termination M-file</td>
</tr>
<tr>
<td><code>exit</code></td>
<td>Terminate MATLAB</td>
</tr>
<tr>
<td><code>matlab</code></td>
<td>Start MATLAB (UNIX systems only)</td>
</tr>
<tr>
<td><code>matlabrc</code></td>
<td>MATLAB startup M-file</td>
</tr>
<tr>
<td><code>quit</code></td>
<td>Terminate MATLAB</td>
</tr>
<tr>
<td><code>startup</code></td>
<td>MATLAB startup M-file</td>
</tr>
</tbody>
</table>
Operators and Special Characters

These are the actual operators you use to enter and manipulate data, for example, matrix multiplication, array multiplication, and line continuation.

<table>
<thead>
<tr>
<th>Operators and Special Characters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Plus</td>
</tr>
<tr>
<td>-</td>
<td>Minus</td>
</tr>
<tr>
<td>*</td>
<td>Matrix multiplication</td>
</tr>
<tr>
<td>.*</td>
<td>Array multiplication</td>
</tr>
<tr>
<td>^</td>
<td>Matrix power</td>
</tr>
<tr>
<td>.^</td>
<td>Array power</td>
</tr>
<tr>
<td>kron</td>
<td>Kronecker tensor product</td>
</tr>
<tr>
<td>\</td>
<td>Backslash or left division</td>
</tr>
<tr>
<td>/</td>
<td>Slash or right division</td>
</tr>
<tr>
<td>./ and .\</td>
<td>Array division, right and left</td>
</tr>
<tr>
<td>:</td>
<td>Colon</td>
</tr>
<tr>
<td>()</td>
<td>Parentheses</td>
</tr>
<tr>
<td>[]</td>
<td>Brackets</td>
</tr>
<tr>
<td>{}</td>
<td>Curly braces</td>
</tr>
<tr>
<td>.</td>
<td>Decimal point</td>
</tr>
<tr>
<td>...</td>
<td>Continuation</td>
</tr>
<tr>
<td>,</td>
<td>Comma</td>
</tr>
<tr>
<td>;</td>
<td>Semicolon</td>
</tr>
<tr>
<td>%</td>
<td>Comment</td>
</tr>
<tr>
<td>!</td>
<td>Exclamation point</td>
</tr>
<tr>
<td>'</td>
<td>Transpose and quote</td>
</tr>
<tr>
<td>.'</td>
<td>Nonconjugated transpose</td>
</tr>
<tr>
<td>=</td>
<td>Assignment</td>
</tr>
<tr>
<td>==</td>
<td>Equality</td>
</tr>
<tr>
<td><></td>
<td>Relational operators</td>
</tr>
<tr>
<td>&</td>
<td>Logical AND</td>
</tr>
<tr>
<td></td>
<td>Logical OR</td>
</tr>
<tr>
<td>~</td>
<td>Logical NOT</td>
</tr>
<tr>
<td>xor</td>
<td>Logical EXCLUSIVE OR</td>
</tr>
</tbody>
</table>

Logical Functions

This set of functions performs logical operations such as checking if a file or variable exists and testing if all elements in an array are nonzero. “Operators and Special Characters” contains other operators that perform logical operations.

<table>
<thead>
<tr>
<th>Logical Functions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Test to determine if all elements are nonzero</td>
</tr>
<tr>
<td>any</td>
<td>Test for any nonzeros</td>
</tr>
<tr>
<td>exist</td>
<td>Check if a variable or file exists</td>
</tr>
<tr>
<td>find</td>
<td>Find indices and values of nonzero elements</td>
</tr>
<tr>
<td>is*</td>
<td>Detect state</td>
</tr>
<tr>
<td>isa</td>
<td>Detect an object of a given class</td>
</tr>
<tr>
<td>iskeyword</td>
<td>Test if string is a MATLAB keyword</td>
</tr>
<tr>
<td>isvarname</td>
<td>Test if string is a valid variable name</td>
</tr>
<tr>
<td>logical</td>
<td>Convert numeric values to logical</td>
</tr>
<tr>
<td>mislocked</td>
<td>True if M-file cannot be cleared</td>
</tr>
</tbody>
</table>

Language Constructs and Debugging

These functions let you work with MATLAB as a programming language. For example, you can control program flow, define global variables, perform interactive input, and debug your code.

MATLAB as a Programming Language

<table>
<thead>
<tr>
<th>MATLAB as a Programming Language</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>builtin</td>
<td>Execute builtin function from overloaded method</td>
</tr>
<tr>
<td>eval</td>
<td>Interpret strings containing MATLAB expressions</td>
</tr>
<tr>
<td>evalc</td>
<td>Evaluate MATLAB expression with capture</td>
</tr>
</tbody>
</table>
MATLAB as a Programming Language (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>evalin</code></td>
<td>Evaluate expression in workspace</td>
</tr>
<tr>
<td><code>feval</code></td>
<td>Function evaluation</td>
</tr>
<tr>
<td><code>function</code></td>
<td>Function M-files</td>
</tr>
<tr>
<td><code>global</code></td>
<td>Define global variables</td>
</tr>
<tr>
<td><code>nargchk</code></td>
<td>Check number of input arguments</td>
</tr>
<tr>
<td><code>persistent</code></td>
<td>Define persistent variable</td>
</tr>
<tr>
<td><code>script</code></td>
<td>Script M-files</td>
</tr>
</tbody>
</table>

Control Flow

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>break</code></td>
<td>Terminate execution of a <code>for</code> or <code>while</code> loop</td>
</tr>
<tr>
<td><code>case</code></td>
<td>Case switch</td>
</tr>
<tr>
<td><code>catch</code></td>
<td>Begin catch block</td>
</tr>
<tr>
<td><code>continue</code></td>
<td>Pass control to the next iteration of a <code>for</code> or <code>while</code> loop</td>
</tr>
<tr>
<td><code>else</code></td>
<td>Conditionally execute statements</td>
</tr>
<tr>
<td><code>elseif</code></td>
<td>Conditionally execute statements</td>
</tr>
<tr>
<td><code>end</code></td>
<td>Terminate <code>for</code>, <code>while</code>, <code>switch</code>, <code>try</code>, and if statements or indicate last index</td>
</tr>
<tr>
<td><code>error</code></td>
<td>Display error messages</td>
</tr>
<tr>
<td><code>for</code></td>
<td>Repeat statements a specific number of times</td>
</tr>
<tr>
<td><code>if</code></td>
<td>Conditionally execute statements</td>
</tr>
<tr>
<td><code>otherwise</code></td>
<td>Default part of <code>switch</code> statement</td>
</tr>
<tr>
<td><code>return</code></td>
<td>Return to the invoking function</td>
</tr>
<tr>
<td><code>switch</code></td>
<td>Switch among several cases based on expression</td>
</tr>
<tr>
<td><code>try</code></td>
<td>Begin try block</td>
</tr>
</tbody>
</table>

Interactive Input

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>input</code></td>
<td>Request user input</td>
</tr>
<tr>
<td><code>keyboard</code></td>
<td>Invoke the keyboard in an M-file</td>
</tr>
<tr>
<td><code>menu</code></td>
<td>Generate a menu of choices for user input</td>
</tr>
<tr>
<td><code>pause</code></td>
<td>Halt execution temporarily</td>
</tr>
</tbody>
</table>

Object-Oriented Programming

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>class</code></td>
<td>Create object or return class of object</td>
</tr>
<tr>
<td><code>double</code></td>
<td>Convert to double precision</td>
</tr>
<tr>
<td><code>inferior</code></td>
<td>Inferior class relationship</td>
</tr>
<tr>
<td><code>inline</code></td>
<td>Construct an inline object</td>
</tr>
<tr>
<td><code>int8</code>, <code>int16</code>, <code>int32</code></td>
<td>Convert to signed integer</td>
</tr>
<tr>
<td><code>isa</code></td>
<td>Detect an object of a given class</td>
</tr>
<tr>
<td><code>loadobj</code></td>
<td>Extends the load function for user objects</td>
</tr>
<tr>
<td><code>saveobj</code></td>
<td>Save filter for objects</td>
</tr>
<tr>
<td><code>single</code></td>
<td>Convert to single precision</td>
</tr>
<tr>
<td><code>superior</code></td>
<td>Superior class relationship</td>
</tr>
<tr>
<td><code>uint8</code>, <code>uint16</code>, <code>uint32</code></td>
<td>Convert to unsigned integer</td>
</tr>
</tbody>
</table>

Debugging

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dbclear</code></td>
<td>Clear breakpoints</td>
</tr>
<tr>
<td><code>dbcont</code></td>
<td>Resume execution</td>
</tr>
<tr>
<td><code>dbdown</code></td>
<td>Change local workspace context</td>
</tr>
<tr>
<td><code>dbmex</code></td>
<td>Enable MEX-file debugging</td>
</tr>
<tr>
<td><code>dbquit</code></td>
<td>Quit debug mode</td>
</tr>
<tr>
<td><code>dbstack</code></td>
<td>Display function call stack</td>
</tr>
<tr>
<td><code>dbstatus</code></td>
<td>List all breakpoints</td>
</tr>
</tbody>
</table>
Debugging (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>dbstep</code></td>
<td>Execute one or more lines from a breakpoint</td>
</tr>
<tr>
<td><code>dbstop</code></td>
<td>Set breakpoints in an M-file function</td>
</tr>
<tr>
<td><code>dbtype</code></td>
<td>List M-file with line numbers</td>
</tr>
<tr>
<td><code>dbup</code></td>
<td>Change local workspace context</td>
</tr>
</tbody>
</table>

Function Handles

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>function_handle</code></td>
<td>MATLAB data type that is a handle to a function</td>
</tr>
<tr>
<td><code>functions</code></td>
<td>Return information about a function handle</td>
</tr>
<tr>
<td><code>func2str</code></td>
<td>Constructs a function name string from a function handle</td>
</tr>
<tr>
<td><code>str2func</code></td>
<td>Constructs a function handle from a function name string</td>
</tr>
</tbody>
</table>

Elementary Matrices and Arrays (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>zeros</code></td>
<td>Create an array of all zeros</td>
</tr>
<tr>
<td><code>:</code> (colon)</td>
<td>Regularly spaced vector</td>
</tr>
</tbody>
</table>

Special Variables and Constants

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ans</code></td>
<td>The most recent answer</td>
</tr>
<tr>
<td><code>computer</code></td>
<td>Identify the computer on which MATLAB is running</td>
</tr>
<tr>
<td><code>eps</code></td>
<td>Floating-point relative accuracy</td>
</tr>
<tr>
<td><code>i</code></td>
<td>Imaginary unit</td>
</tr>
<tr>
<td><code>Inf</code></td>
<td>Infinity</td>
</tr>
<tr>
<td><code>inputname</code></td>
<td>Input argument name</td>
</tr>
<tr>
<td><code>j</code></td>
<td>Imaginary unit</td>
</tr>
<tr>
<td><code>NaN</code></td>
<td>Not-a-Number</td>
</tr>
<tr>
<td><code>nargin</code>, <code>nargout</code></td>
<td>Number of function arguments</td>
</tr>
<tr>
<td><code>nargoutchk</code></td>
<td>Validate number of output arguments</td>
</tr>
<tr>
<td><code>pi</code></td>
<td>Ratio of a circle's circumference to its diameter</td>
</tr>
<tr>
<td><code>realmax</code></td>
<td>Largest positive floating-point number</td>
</tr>
<tr>
<td><code>realmin</code></td>
<td>Smallest positive floating-point number</td>
</tr>
<tr>
<td><code>varargin</code>, <code>varargout</code></td>
<td>Pass or return variable numbers of arguments</td>
</tr>
</tbody>
</table>

Time and Dates

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>calendar</code></td>
<td>Calendar</td>
</tr>
<tr>
<td><code>clock</code></td>
<td>Current time as a date vector</td>
</tr>
<tr>
<td><code>cputime</code></td>
<td>Elapsed CPU time</td>
</tr>
<tr>
<td><code>date</code></td>
<td>Current date string</td>
</tr>
<tr>
<td><code>datenum</code></td>
<td>Serial date number</td>
</tr>
<tr>
<td><code>datestr</code></td>
<td>Date string format</td>
</tr>
<tr>
<td><code>datevec</code></td>
<td>Date components</td>
</tr>
<tr>
<td><code>eomday</code></td>
<td>End of month</td>
</tr>
<tr>
<td><code>etime</code></td>
<td>Elapsed time</td>
</tr>
<tr>
<td><code>now</code></td>
<td>Current date and time</td>
</tr>
</tbody>
</table>

Elementary Matrices and Arrays

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>blkdiag</code></td>
<td>Construct a block diagonal matrix from input arguments</td>
</tr>
<tr>
<td><code>eye</code></td>
<td>Identity matrix</td>
</tr>
<tr>
<td><code>linspace</code></td>
<td>Generate linearly spaced vectors</td>
</tr>
<tr>
<td><code>logspace</code></td>
<td>Generate logarithmically spaced vectors</td>
</tr>
<tr>
<td><code>numel</code></td>
<td>Number of elements in a matrix or cell array</td>
</tr>
<tr>
<td><code>ones</code></td>
<td>Create an array of all ones</td>
</tr>
<tr>
<td><code>rand</code></td>
<td>Uniformly distributed random numbers and arrays</td>
</tr>
<tr>
<td><code>randn</code></td>
<td>Normally distributed random numbers and arrays</td>
</tr>
</tbody>
</table>
Specialized Matrices

These functions let you work with matrices such as Hadamard, Hankel, Hilbert, and magic squares.

Specialized Matrices

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compan</td>
<td>Companion matrix</td>
</tr>
<tr>
<td>gallery</td>
<td>Test matrices</td>
</tr>
<tr>
<td>hadamard</td>
<td>Hadamard matrix</td>
</tr>
<tr>
<td>hankel</td>
<td>Hankel matrix</td>
</tr>
<tr>
<td>hilb</td>
<td>Hilbert matrix</td>
</tr>
<tr>
<td>invhilb</td>
<td>Inverse of the Hilbert matrix</td>
</tr>
<tr>
<td>magic</td>
<td>Magic square</td>
</tr>
<tr>
<td>pascal</td>
<td>Pascal matrix</td>
</tr>
<tr>
<td>toeplitz</td>
<td>Toeplitz matrix</td>
</tr>
<tr>
<td>Wilkinson</td>
<td>Wilkinson's eigenvalue test matrix</td>
</tr>
</tbody>
</table>

Elementary Math Functions

These are many of the standard mathematical functions such as trigonometric, hyperbolic, logarithmic, and complex number manipulation.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>Absolute value and complex magnitude</td>
</tr>
<tr>
<td>acos, acosh</td>
<td>Inverse cosine and inverse hyperbolic cosine</td>
</tr>
<tr>
<td>acot, acoth</td>
<td>Inverse cotangent and inverse hyperbolic cotangent</td>
</tr>
<tr>
<td>acsc, acsch</td>
<td>Inverse cosecant and inverse hyperbolic cosecant</td>
</tr>
<tr>
<td>angle</td>
<td>Phase angle</td>
</tr>
<tr>
<td>asec, asech</td>
<td>Inverse secant and inverse hyperbolic secant</td>
</tr>
<tr>
<td>asin, asinh</td>
<td>Inverse sine and inverse hyperbolic sine</td>
</tr>
</tbody>
</table>
Elementary Math Functions (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>atan2</td>
<td>Four-quadrant inverse tangent</td>
</tr>
<tr>
<td>ceil</td>
<td>Round toward infinity</td>
</tr>
<tr>
<td>complex</td>
<td>Construct complex data from real and imaginary components</td>
</tr>
<tr>
<td>conj</td>
<td>Complex conjugate</td>
</tr>
<tr>
<td>cos, cosh</td>
<td>Cosine and hyperbolic cosine</td>
</tr>
<tr>
<td>cot, coth</td>
<td>Cotangent and hyperbolic cotangent</td>
</tr>
<tr>
<td>csc, csch</td>
<td>Cosecant and hyperbolic cosecant</td>
</tr>
<tr>
<td>exp</td>
<td>Exponential</td>
</tr>
<tr>
<td>fix</td>
<td>Round towards zero</td>
</tr>
<tr>
<td>floor</td>
<td>Round towards minus infinity</td>
</tr>
<tr>
<td>gcd</td>
<td>Greatest common divisor</td>
</tr>
<tr>
<td>imag</td>
<td>Imaginary part of a complex number</td>
</tr>
<tr>
<td>lcm</td>
<td>Least common multiple</td>
</tr>
<tr>
<td>log</td>
<td>Natural logarithm</td>
</tr>
<tr>
<td>log2</td>
<td>Base 2 logarithm and dissect floating-point numbers into exponent and mantissa</td>
</tr>
<tr>
<td>log10</td>
<td>Common (base 10) logarithm</td>
</tr>
<tr>
<td>mod</td>
<td>Modulus (signed remainder after division)</td>
</tr>
<tr>
<td>nchoosek</td>
<td>Binomial coefficient or all combinations</td>
</tr>
<tr>
<td>real</td>
<td>Real part of complex number</td>
</tr>
<tr>
<td>rem</td>
<td>Remainder after division</td>
</tr>
<tr>
<td>round</td>
<td>Round to nearest integer</td>
</tr>
<tr>
<td>sec, sech</td>
<td>Secant and hyperbolic secant</td>
</tr>
<tr>
<td>sign</td>
<td>Signum function</td>
</tr>
<tr>
<td>sin, sinh</td>
<td>Sine and hyperbolic sine</td>
</tr>
<tr>
<td>sqrt</td>
<td>Square root</td>
</tr>
<tr>
<td>tan, tanh</td>
<td>Tangent and hyperbolic tangent</td>
</tr>
</tbody>
</table>

Specialized Math Functions

This set of functions includes Bessel, elliptic, gamma, factorial, and others.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>airy</td>
<td>Airy functions</td>
</tr>
<tr>
<td>besselh</td>
<td>Bessel functions of the third kind (Hankel functions)</td>
</tr>
<tr>
<td>besseli, besselk</td>
<td>Modified Bessel functions</td>
</tr>
<tr>
<td>besselj, bessely</td>
<td>Bessel functions</td>
</tr>
<tr>
<td>beta, betainc, betaln</td>
<td>Beta, beta inc, beta ln</td>
</tr>
<tr>
<td>ellipj</td>
<td>Jacobi elliptic functions</td>
</tr>
<tr>
<td>ellipke</td>
<td>Complete elliptic integrals of the first and second kind</td>
</tr>
<tr>
<td>erf, erfc, erfcx, erfinv</td>
<td>Error functions</td>
</tr>
<tr>
<td>expint</td>
<td>Exponential integral</td>
</tr>
<tr>
<td>factorial</td>
<td>Factorial function</td>
</tr>
<tr>
<td>gamma, gammaln</td>
<td>Gamma functions</td>
</tr>
<tr>
<td>legendre</td>
<td>Associated Legendre functions</td>
</tr>
<tr>
<td>pow2</td>
<td>Base 2 power and scale floating-point numbers</td>
</tr>
<tr>
<td>rat, rats</td>
<td>Rational fraction approximation</td>
</tr>
</tbody>
</table>
Coordinate System Conversion

Using these functions you can transform Cartesian coordinates to polar, cylindrical, or spherical, and vice versa.

Coordinate System Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cart2pol</td>
<td>Transform Cartesian coordinates to polar or cylindrical</td>
</tr>
<tr>
<td>cart2sph</td>
<td>Transform Cartesian coordinates to spherical</td>
</tr>
<tr>
<td>pol2cart</td>
<td>Transform polar or cylindrical coordinates to Cartesian</td>
</tr>
<tr>
<td>sph2cart</td>
<td>Transform spherical coordinates to Cartesian</td>
</tr>
</tbody>
</table>

Matrix Functions - Numerical Linear Algebra

These functions let you perform matrix analysis including matrix determinant, rank, reduced row echelon form, eigenvalues, and inverses.

Matrix Analysis

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cond</td>
<td>Condition number with respect to inversion</td>
</tr>
<tr>
<td>condeig</td>
<td>Condition number with respect to eigenvalues</td>
</tr>
<tr>
<td>det</td>
<td>Matrix determinant</td>
</tr>
<tr>
<td>norm</td>
<td>Vector and matrix norms</td>
</tr>
<tr>
<td>null</td>
<td>Null space of a matrix</td>
</tr>
<tr>
<td>orth</td>
<td>Range space of a matrix</td>
</tr>
<tr>
<td>rank</td>
<td>Rank of a matrix</td>
</tr>
<tr>
<td>rcond</td>
<td>Matrix reciprocal condition number estimate</td>
</tr>
<tr>
<td>rref, rrefmovie</td>
<td>Reduced row echelon form</td>
</tr>
<tr>
<td>subspace</td>
<td>Angle between two subspaces</td>
</tr>
<tr>
<td>trace</td>
<td>Sum of diagonal elements</td>
</tr>
</tbody>
</table>

Linear Equations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>chol</td>
<td>Cholesky factorization</td>
</tr>
<tr>
<td>inv</td>
<td>Matrix inverse</td>
</tr>
<tr>
<td>lscov</td>
<td>Least squares solution in the presence of known covariance</td>
</tr>
<tr>
<td>lu</td>
<td>LU matrix factorization</td>
</tr>
<tr>
<td>lsqnonneg</td>
<td>Nonnegative least squares</td>
</tr>
<tr>
<td>mnrres</td>
<td>Minimum Residual Method</td>
</tr>
<tr>
<td>pinv</td>
<td>Moore-Penrose pseudoinverse of a matrix</td>
</tr>
<tr>
<td>qr</td>
<td>Orthogonal-triangular decomposition</td>
</tr>
<tr>
<td>symmlq</td>
<td>Symmetric LQ method</td>
</tr>
</tbody>
</table>

Eigenvalues and Singular Values

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>balance</td>
<td>Improve accuracy of computed eigenvalues</td>
</tr>
<tr>
<td>cdf2rdf</td>
<td>Convert complex diagonal form to real block diagonal form</td>
</tr>
<tr>
<td>eig</td>
<td>Eigenvalues and eigenvectors</td>
</tr>
<tr>
<td>gsvd</td>
<td>Generalized singular value decomposition</td>
</tr>
<tr>
<td>hess</td>
<td>Hessenberg form of a matrix</td>
</tr>
<tr>
<td>poly</td>
<td>Polynomial with specified roots</td>
</tr>
<tr>
<td>qz</td>
<td>QZ factorization for generalized eigenvalues</td>
</tr>
<tr>
<td>rsf2csf</td>
<td>Convert real Schur form to complex Schur form</td>
</tr>
<tr>
<td>schur</td>
<td>Schur decomposition</td>
</tr>
<tr>
<td>svd</td>
<td>Singular value decomposition</td>
</tr>
</tbody>
</table>

Matrix Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>expm</td>
<td>Matrix exponential</td>
</tr>
<tr>
<td>funm</td>
<td>Evaluate general matrix function</td>
</tr>
<tr>
<td>logm</td>
<td>Matrix logarithm</td>
</tr>
<tr>
<td>sqrtm</td>
<td>Matrix square root</td>
</tr>
</tbody>
</table>
Data Analysis and Fourier Transform Functions

Using the data analysis functions, you can find permutations, prime numbers, mean, median, variance, correlation, and perform convolutions and other standard array manipulations. A set of vector functions lets you operate on vectors to find cross product, union, and other standard vector manipulations. The Fourier transform functions let you perform discrete Fourier transformations in one or more dimensions and their inverses.

Low Level Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>qrdelete</code></td>
<td>Delete column from QR factorization</td>
</tr>
<tr>
<td><code>qrinsert</code></td>
<td>Insert column in QR factorization</td>
</tr>
</tbody>
</table>

Basic Operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cumprod</code></td>
<td>Cumulative product</td>
</tr>
<tr>
<td><code>cumsum</code></td>
<td>Cumulative sum</td>
</tr>
<tr>
<td><code>cumtrapz</code></td>
<td>Cumulative trapezoidal numerical integration</td>
</tr>
<tr>
<td><code>factor</code></td>
<td>Prime factors</td>
</tr>
<tr>
<td><code>inpolygon</code></td>
<td>Detect points inside a polygonal region</td>
</tr>
<tr>
<td><code>max</code></td>
<td>Maximum elements of an array</td>
</tr>
<tr>
<td><code>mean</code></td>
<td>Average or mean value of arrays</td>
</tr>
<tr>
<td><code>median</code></td>
<td>Median value of arrays</td>
</tr>
<tr>
<td><code>min</code></td>
<td>Minimum elements of an array</td>
</tr>
<tr>
<td><code>perms</code></td>
<td>All possible permutations</td>
</tr>
<tr>
<td><code>polyarea</code></td>
<td>Area of polygon</td>
</tr>
<tr>
<td><code>primes</code></td>
<td>Generate list of prime numbers</td>
</tr>
<tr>
<td><code>prod</code></td>
<td>Product of array elements</td>
</tr>
<tr>
<td><code>rectint</code></td>
<td>Rectangle intersection area</td>
</tr>
<tr>
<td><code>sort</code></td>
<td>Sort elements in ascending order</td>
</tr>
<tr>
<td><code>sortrows</code></td>
<td>Sort rows in ascending order</td>
</tr>
</tbody>
</table>

Basic Operations (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>std</code></td>
<td>Standard deviation</td>
</tr>
<tr>
<td><code>sum</code></td>
<td>Sum of array elements</td>
</tr>
<tr>
<td><code>trapz</code></td>
<td>Trapezoidal numerical integration</td>
</tr>
<tr>
<td><code>var</code></td>
<td>Variance</td>
</tr>
</tbody>
</table>

Finite Differences

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>del2</code></td>
<td>Discrete Laplacian</td>
</tr>
<tr>
<td><code>diff</code></td>
<td>Differences and approximate derivatives</td>
</tr>
<tr>
<td><code>gradient</code></td>
<td>Numerical gradient</td>
</tr>
</tbody>
</table>

Correlation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>corrcoef</code></td>
<td>Correlation coefficients</td>
</tr>
<tr>
<td><code>cov</code></td>
<td>Covariance matrix</td>
</tr>
</tbody>
</table>

Filtering and Convolution

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>conv</code></td>
<td>Convolution and polynomial multiplication</td>
</tr>
<tr>
<td><code>conv2</code></td>
<td>Two-dimensional convolution</td>
</tr>
<tr>
<td><code>deconv</code></td>
<td>Deconvolution and polynomial division</td>
</tr>
<tr>
<td><code>filter</code></td>
<td>Filter data with an infinite impulse response (IIR) or finite impulse response (FIR) filter</td>
</tr>
<tr>
<td><code>filter2</code></td>
<td>Two-dimensional digital filtering</td>
</tr>
</tbody>
</table>

Fourier Transforms

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>abs</code></td>
<td>Absolute value and complex magnitude</td>
</tr>
<tr>
<td><code>angle</code></td>
<td>Phase angle</td>
</tr>
<tr>
<td><code>cplxpair</code></td>
<td>Sort complex numbers into complex conjugate pairs</td>
</tr>
<tr>
<td><code>fft</code></td>
<td>One-dimensional fast Fourier transform</td>
</tr>
</tbody>
</table>
Polynomial and Interpolation Functions

These functions let you operate on polynomials such as multiply, divide, find derivatives, and evaluate. The data interpolation functions let you perform interpolation in one, two, three, and higher dimensions.
Using these functions you can solve differential equations, perform numerical evaluation of integrals, and optimize functions.

Function Functions - Nonlinear Numerical Methods

Data Interpolation (Continued)
- `interp3`: Three-dimensional data interpolation (table lookup)
- `interpft`: One-dimensional interpolation using the FFT method
- `interpn`: Multidimensional data interpolation (table lookup)
- `meshgrid`: Generate X and Y matrices for three-dimensional plots
- `ndgrid`: Generate arrays for multidimensional functions and interpolation
- `pchip`: Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
- `ppval`: Piecewise polynomial evaluation
- `spline`: Cubic spline interpolation
- `tsearch`: Search for enclosing Delaunay triangle
- `tsearchn`: Multidimensional closest simplex search
- `voronoi`: Voronoi diagram
- `voronoin`: Multidimensional Voronoi diagrams

Function Functions - Nonlinear Numerical Methods (Continued)
- `bvp4c`: Solve two-point boundary value problems (BVPs) for ordinary differential equations (ODEs)
- `bvpget`: Extract parameters from BVP options structure
- `bvpinit`: Form the initial guess for `bvp4c`
- `bvpset`: Create/alter BVP options structure
- `bvpval`: Evaluate the solution computed by `bvp4c`
- `dblquad`: Numerical evaluation of double integrals
- `fminbnd`: Minimize a function of one variable
- `fminsearch`: Minimize a function of several variables
- `fzero`: Find zero of a function of one variable
- `ode45`, `ode23`, `ode113`, `ode15s`, `ode23s`, `ode23t`, `ode23tb`: Solve initial value problems for ODEs
- `odeget`: Extract parameters from ODE options structure
- `odeset`: Create/alter ODE options structure
- `optimget`: Get optimization options structure parameter values
- `optimset`: Create or edit optimization options parameter structure
- `pdepe`: Solve initial-boundary value problems
- `pdeval`: Evaluate the solution computed by `pdepe`
- `quad`: Numerical evaluation of integrals, adaptive Simpson quadrature
- `quadl`: Numerical evaluation of integrals, adaptive Lobatto quadrature
- `vectorize`: Vectorize expression
Sparse Matrix Functions

These functions allow you to operate on a special type of matrix, sparse. Using these functions you can convert full to sparse, visualize, and operate on these matrices.

Elementary Sparse Matrices

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spdiags</td>
<td>Extract and create sparse band and diagonal matrices</td>
</tr>
<tr>
<td>speye</td>
<td>Sparse identity matrix</td>
</tr>
<tr>
<td>sprand</td>
<td>Sparse uniformly distributed random matrix</td>
</tr>
<tr>
<td>sprandn</td>
<td>Sparse normally distributed random matrix</td>
</tr>
<tr>
<td>sprandsym</td>
<td>Sparse symmetric random matrix</td>
</tr>
</tbody>
</table>

Full to Sparse Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>Find indices and values of nonzero elements</td>
</tr>
<tr>
<td>full</td>
<td>Convert sparse matrix to full matrix</td>
</tr>
<tr>
<td>sparse</td>
<td>Create sparse matrix</td>
</tr>
<tr>
<td>spconvert</td>
<td>Import matrix from sparse matrix external format</td>
</tr>
</tbody>
</table>

Working with Nonzero Entries of Sparse Matrices

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>nnz</td>
<td>Number of nonzero matrix elements</td>
</tr>
<tr>
<td>nonzeros</td>
<td>Nonzero matrix elements</td>
</tr>
<tr>
<td>nzmax</td>
<td>Amount of storage allocated for nonzero matrix elements</td>
</tr>
<tr>
<td>spalloc</td>
<td>Allocate space for sparse matrix</td>
</tr>
<tr>
<td>spfun</td>
<td>Apply function to nonzero sparse matrix elements</td>
</tr>
<tr>
<td>spones</td>
<td>Replace nonzero sparse matrix elements with ones</td>
</tr>
</tbody>
</table>

Visualizing Sparse Matrices

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spy</td>
<td>Visualize sparsity pattern</td>
</tr>
</tbody>
</table>

Reordering Algorithms

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>colamd</td>
<td>Column approximate minimum degree permutation</td>
</tr>
<tr>
<td>colmmd</td>
<td>Sparse column minimum degree permutation</td>
</tr>
<tr>
<td>colperm</td>
<td>Sparse column permutation based on nonzero count</td>
</tr>
<tr>
<td>dmperm</td>
<td>Dulmage-Mendelsohn decomposition</td>
</tr>
<tr>
<td>randperm</td>
<td>Random permutation</td>
</tr>
<tr>
<td>symamd</td>
<td>Symmetric approximate minimum degree permutation</td>
</tr>
<tr>
<td>symmmd</td>
<td>Sparse symmetric minimum degree ordering</td>
</tr>
<tr>
<td>symrcm</td>
<td>Sparse reverse Cuthill-McKee ordering</td>
</tr>
</tbody>
</table>

Norm, Condition Number, and Rank

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>condest</td>
<td>1-norm matrix condition number estimate</td>
</tr>
<tr>
<td>normest</td>
<td>2-norm estimate</td>
</tr>
</tbody>
</table>

Sparse Systems of Linear Equations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bicg</td>
<td>BiConjugate Gradients method</td>
</tr>
<tr>
<td>bicgstab</td>
<td>BiConjugate Gradients Stabilized method</td>
</tr>
<tr>
<td>cgs</td>
<td>Conjugate Gradients Squared method</td>
</tr>
<tr>
<td>cholinc</td>
<td>Sparse Incomplete Cholesky and Cholesky-Infinity factorizations</td>
</tr>
<tr>
<td>cholupdate</td>
<td>Rank 1 update to Cholesky factorization</td>
</tr>
<tr>
<td>gmres</td>
<td>Generalized Minimum Residual method (with restarts)</td>
</tr>
</tbody>
</table>
Sparse Systems of Linear Equations (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lsqr</td>
<td>LSQR implementation of Conjugate Gradients on the normal equations</td>
</tr>
<tr>
<td>luinc</td>
<td>Incomplete LU matrix factorizations</td>
</tr>
<tr>
<td>pcg</td>
<td>Preconditioned Conjugate Gradients method</td>
</tr>
<tr>
<td>qmr</td>
<td>Quasi-Minimal Residual method</td>
</tr>
<tr>
<td>qr</td>
<td>Orthogonal-triangular decomposition</td>
</tr>
<tr>
<td>qrdelete</td>
<td>Delete column from QR factorization</td>
</tr>
<tr>
<td>qrinsert</td>
<td>Insert column in QR factorization</td>
</tr>
<tr>
<td>qrupdate</td>
<td>Rank 1 update to QR factorization</td>
</tr>
</tbody>
</table>

Sound Processing Functions

The sound processing functions let you convert signals, and read and write .au and .wav sound files.

General Sound Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lin2mu</td>
<td>Convert linear audio signal to mu-law</td>
</tr>
<tr>
<td>mu2lin</td>
<td>Convert mu-law audio signal to linear</td>
</tr>
<tr>
<td>sound</td>
<td>Convert vector into sound</td>
</tr>
<tr>
<td>soundsc</td>
<td>Scale data and play as sound</td>
</tr>
</tbody>
</table>

SPARCstation-Specific Sound Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>auread</td>
<td>Read NeXT/SUN (.au) sound file</td>
</tr>
<tr>
<td>auwrite</td>
<td>Write NeXT/SUN (.au) sound file</td>
</tr>
</tbody>
</table>

.WAV Sound Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>wavplay</td>
<td>Play recorded sound on a PC-based audio output device</td>
</tr>
<tr>
<td>wavread</td>
<td>Read Microsoft WAVE (.wav) sound file</td>
</tr>
<tr>
<td>wavrecord</td>
<td>Record sound using a PC-based audio input device</td>
</tr>
<tr>
<td>wavwrite</td>
<td>Write Microsoft WAVE (.wav) sound file</td>
</tr>
</tbody>
</table>

Sparse Eigenvalues and Singular Values

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>eigs</td>
<td>Find eigenvalues and eigenvectors</td>
</tr>
<tr>
<td>svds</td>
<td>Find singular values</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spparms</td>
<td>Set parameters for sparse matrix routines</td>
</tr>
</tbody>
</table>
Character String Functions

This set of functions lets you manipulate strings such as comparison, concatenation, search, and conversion.

General

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>abs</td>
<td>Absolute value and complex magnitude</td>
</tr>
<tr>
<td>eval</td>
<td>Interpret strings containing MATLAB expressions</td>
</tr>
<tr>
<td>real</td>
<td>Real part of complex number</td>
</tr>
<tr>
<td>strings</td>
<td>MATLAB string handling</td>
</tr>
</tbody>
</table>

String to Function Handle Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>func2str</td>
<td>Constructs a function name string from a function handle</td>
</tr>
<tr>
<td>str2func</td>
<td>Constructs a function handle from a function name string</td>
</tr>
</tbody>
</table>

String Manipulation

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>deblank</td>
<td>Strip trailing blanks from the end of a string</td>
</tr>
<tr>
<td>findstr</td>
<td>Find one string within another</td>
</tr>
<tr>
<td>lower</td>
<td>Convert string to lower case</td>
</tr>
<tr>
<td>strcat</td>
<td>String concatenation</td>
</tr>
<tr>
<td>strcmp</td>
<td>Compare strings</td>
</tr>
<tr>
<td>strcmpi</td>
<td>Compare strings ignoring case</td>
</tr>
<tr>
<td>strjust</td>
<td>Justify a character array</td>
</tr>
<tr>
<td>strmatch</td>
<td>Find possible matches for a string</td>
</tr>
<tr>
<td>strncmp</td>
<td>Compare the first (n) characters of two strings</td>
</tr>
<tr>
<td>strncmpi</td>
<td>Compare the first (n) characters of strings, ignoring case</td>
</tr>
<tr>
<td>strrep</td>
<td>String search and replace</td>
</tr>
<tr>
<td>strtok</td>
<td>First token in string</td>
</tr>
<tr>
<td>strvcat</td>
<td>Vertical concatenation of strings</td>
</tr>
</tbody>
</table>

String to Number Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>Create character array (string)</td>
</tr>
<tr>
<td>int2str</td>
<td>Integer to string conversion</td>
</tr>
<tr>
<td>mat2str</td>
<td>Convert a matrix into a string</td>
</tr>
<tr>
<td>num2str</td>
<td>Number to string conversion</td>
</tr>
<tr>
<td>sprintf</td>
<td>Write formatted data to a string</td>
</tr>
<tr>
<td>sscanf</td>
<td>Read string under format control</td>
</tr>
<tr>
<td>str2double</td>
<td>Convert string to double-precision value</td>
</tr>
<tr>
<td>str2mat</td>
<td>String to matrix conversion</td>
</tr>
<tr>
<td>str2num</td>
<td>String to number conversion</td>
</tr>
</tbody>
</table>

Radix Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin2dec</td>
<td>Binary to decimal number conversion</td>
</tr>
<tr>
<td>dec2bin</td>
<td>Decimal to binary number conversion</td>
</tr>
<tr>
<td>dec2hex</td>
<td>Decimal to hexadecimal number conversion</td>
</tr>
<tr>
<td>hex2dec</td>
<td>Hexadecimal to decimal number conversion</td>
</tr>
<tr>
<td>hex2num</td>
<td>Hexadecimal to double number conversion</td>
</tr>
</tbody>
</table>
File I/O Functions

The file I/O functions allow you to open and close files, read and write formatted and unformatted data, operate on files, and perform other specialized file I/O such as reading and writing images and spreadsheets.

File Opening and Closing

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fclose</td>
<td>Close one or more open files</td>
</tr>
<tr>
<td>fopen</td>
<td>Open a file or obtain information about open files</td>
</tr>
</tbody>
</table>

Unformatted I/O

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fread</td>
<td>Read binary data from file</td>
</tr>
<tr>
<td>fwrite</td>
<td>Write binary data to a file</td>
</tr>
</tbody>
</table>

Formatted I/O

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgetl</td>
<td>Return the next line of a file as a string without line terminator(s)</td>
</tr>
<tr>
<td>fgets</td>
<td>Return the next line of a file as a string with line terminator(s)</td>
</tr>
<tr>
<td>fprintf</td>
<td>Write formatted data to file</td>
</tr>
<tr>
<td>fscanf</td>
<td>Read formatted data from file</td>
</tr>
</tbody>
</table>

File Positioning

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>feof</td>
<td>Test for end-of-file</td>
</tr>
<tr>
<td>ferror</td>
<td>Query MATLAB about errors in file input or output</td>
</tr>
<tr>
<td>frewind</td>
<td>Rewind an open file</td>
</tr>
<tr>
<td>fseek</td>
<td>Set file position indicator</td>
</tr>
<tr>
<td>ftell</td>
<td>Get file position indicator</td>
</tr>
</tbody>
</table>

String Conversion

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sprintf</td>
<td>Write formatted data to a string</td>
</tr>
<tr>
<td>sscanf</td>
<td>Read string under format control</td>
</tr>
</tbody>
</table>

Specialized File I/O

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dlmread</td>
<td>Read an ASCII delimited file into a matrix</td>
</tr>
<tr>
<td>dlmwrite</td>
<td>Write a matrix to an ASCII delimited file</td>
</tr>
<tr>
<td>hdf</td>
<td>HDF interface</td>
</tr>
<tr>
<td>imfinfo</td>
<td>Return information about a graphics file</td>
</tr>
<tr>
<td>imread</td>
<td>Read image from graphics file</td>
</tr>
<tr>
<td>imwrite</td>
<td>Write an image to a graphics file</td>
</tr>
<tr>
<td>strread</td>
<td>Read formatted data from a string</td>
</tr>
<tr>
<td>textread</td>
<td>Read formatted data from text file</td>
</tr>
<tr>
<td>wk1read</td>
<td>Read a Lotus123 WK1 spreadsheet file into a matrix</td>
</tr>
<tr>
<td>wk1write</td>
<td>Write a matrix to a Lotus123 WK1 spreadsheet file</td>
</tr>
</tbody>
</table>

Bitwise Functions

These functions let you operate at the bit level such as shifting and complementing.

Bitwise Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bitand</td>
<td>Bit-wise AND</td>
</tr>
<tr>
<td>bitor</td>
<td>Bit-wise OR</td>
</tr>
<tr>
<td>bitcmp</td>
<td>Complement bits</td>
</tr>
<tr>
<td>bitmax</td>
<td>Maximum floating-point integer</td>
</tr>
<tr>
<td>bitset</td>
<td>Set bit</td>
</tr>
<tr>
<td>bitshift</td>
<td>Bit-wise shift</td>
</tr>
<tr>
<td>bitget</td>
<td>Get bit</td>
</tr>
<tr>
<td>bitxor</td>
<td>Bit-wise XOR</td>
</tr>
</tbody>
</table>
Structure Functions

Structures are arrays whose elements can hold any MATLAB data type such as text, numeric arrays, or other structures. You access structure elements by name. Use the structure functions to create and operate on this array type.

Structure Functions
- `deal` Deal inputs to outputs
- `fieldnames` Field names of a structure
- `getfield` Get field of structure array
- `rmfield` Remove structure fields
- `setfield` Set field of structure array
- `struct` Create structure array
- `struct2cell` Structure to cell array conversion

MATLAB Object Functions

Using the object functions you can create objects, detect objects of a given class, and return the class of an object.

Object Functions
- `class` Create object or return class of object
- `isa` Detect an object of a given class
- `methods` Display method names
- `methodsview` Displays information on all methods implemented by a class
- `subsasgn` Overloaded method for `A(I)=B`, `A{I}=B`, and `A.field=B`
- `subsindex` Overloaded method for `X(A)`
- `subsref` Overloaded method for `A(I)`, `A{I}` and `A.field`

MATLAB Interface to Java Functions

These functions allow you to bring Java classes into MATLAB, construct objects, and call and save methods.

Interface to Java Functions
- `class` Create object or return class of object
- `import` Add a package or class to the current Java import list
- `isa` Detect an object of a given class
- `isjava` Test whether an object is a Java object
- `javaArray` Constructs a Java array
- `javaMethod` Invokes a Java method
- `javaObject` Constructs a Java object
- `methods` Display method names
- `methodsview` Display information on all methods implemented by a class
Cell Array Functions

Cell arrays are arrays comprised of cells, which can hold any MATLAB data type such as text, numeric arrays, or other cell arrays. Unlike structures, you access these cells by number. Use the cell array functions to create and operate on these arrays.

<table>
<thead>
<tr>
<th>Cell Array Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>Create cell array</td>
</tr>
<tr>
<td>cellfun</td>
<td>Apply a function to each element in a cell array</td>
</tr>
<tr>
<td>cellstr</td>
<td>Create cell array of strings from character array</td>
</tr>
<tr>
<td>cell2struct</td>
<td>Cell array to structure array conversion</td>
</tr>
<tr>
<td>celldisp</td>
<td>Display cell array contents</td>
</tr>
<tr>
<td>cellplot</td>
<td>Graphically display the structure of cell arrays</td>
</tr>
<tr>
<td>num2cell</td>
<td>Convert a numeric array into a cell array</td>
</tr>
</tbody>
</table>

Multidimensional Array Functions

These functions provide a mechanism for working with arrays of dimension greater than 2.

<table>
<thead>
<tr>
<th>Multidimensional Array Functions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cat</td>
<td>Concatenate arrays</td>
</tr>
<tr>
<td>flipdim</td>
<td>Flip array along a specified dimension</td>
</tr>
<tr>
<td>ind2sub</td>
<td>Subscripts from linear index</td>
</tr>
<tr>
<td>ipermute</td>
<td>Inverse permute the dimensions of a multidimensional array</td>
</tr>
<tr>
<td>ndgrid</td>
<td>Generate arrays for multidimensional functions and interpolation</td>
</tr>
<tr>
<td>ndims</td>
<td>Number of array dimensions</td>
</tr>
</tbody>
</table>

Data Visualization

This extensive set of functions gives you the ability to create basic graphs such as bar, pie, polar, and three-dimensional plots, and advanced graphs such as surface, mesh, contour, and volume visualization plots. In addition, you can use these functions to control lighting, color, view, and many other fine manipulations.

<table>
<thead>
<tr>
<th>Basic Plots and Graphs</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar</td>
<td>Vertical bar chart</td>
</tr>
<tr>
<td>barh</td>
<td>Horizontal bar chart</td>
</tr>
<tr>
<td>hist</td>
<td>Plot histograms</td>
</tr>
<tr>
<td>histc</td>
<td>Histogram count</td>
</tr>
<tr>
<td>hold</td>
<td>Hold current graph</td>
</tr>
<tr>
<td>loglog</td>
<td>Plot using log-log scales</td>
</tr>
<tr>
<td>pie</td>
<td>Pie plot</td>
</tr>
<tr>
<td>plot</td>
<td>Plot vectors or matrices.</td>
</tr>
<tr>
<td>polar</td>
<td>Polar coordinate plot</td>
</tr>
<tr>
<td>semilogx</td>
<td>Semi-log scale plot</td>
</tr>
<tr>
<td>semilogy</td>
<td>Semi-log scale plot</td>
</tr>
<tr>
<td>subplot</td>
<td>Create axes in tiled positions</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Three-Dimensional Plotting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bar3</td>
<td>Vertical 3-D bar chart</td>
</tr>
<tr>
<td>bar3h</td>
<td>Horizontal 3-D bar chart</td>
</tr>
<tr>
<td>comet3</td>
<td>3-D comet plot</td>
</tr>
<tr>
<td>cylinder</td>
<td>Generate cylinder</td>
</tr>
</tbody>
</table>
Three-Dimensional Plotting (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fill3</td>
<td>Draw filled 3-D polygons in 3-space</td>
</tr>
<tr>
<td>plot3</td>
<td>Plot lines and points in 3-D space</td>
</tr>
<tr>
<td>quiver3</td>
<td>Three-dimensional quiver (or velocity) plot</td>
</tr>
<tr>
<td>slice</td>
<td>Volumetric slice plot</td>
</tr>
<tr>
<td>sphere</td>
<td>Generate sphere</td>
</tr>
<tr>
<td>stem3</td>
<td>Plot discrete surface data</td>
</tr>
<tr>
<td>waterfall</td>
<td>Waterfall plot</td>
</tr>
</tbody>
</table>

Plot Annotation and Grids

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>clabel</td>
<td>Add contour labels to a contour plot</td>
</tr>
<tr>
<td>datetick</td>
<td>Date formatted tick labels</td>
</tr>
<tr>
<td>grid</td>
<td>Grid lines for 2-D and 3-D plots</td>
</tr>
<tr>
<td>gtext</td>
<td>Place text on a 2-D graph using a mouse</td>
</tr>
<tr>
<td>legend</td>
<td>Graph legend for lines and patches</td>
</tr>
<tr>
<td>plotedit</td>
<td>Start plot edit mode to edit and annotate plots</td>
</tr>
<tr>
<td>plotyy</td>
<td>Plot graphs with Y tick labels on the left and right</td>
</tr>
<tr>
<td>title</td>
<td>Titles for 2-D and 3-D plots</td>
</tr>
<tr>
<td>xlabel</td>
<td>X-axis labels for 2-D and 3-D plots</td>
</tr>
<tr>
<td>ylabel</td>
<td>Y-axis labels for 2-D and 3-D plots</td>
</tr>
<tr>
<td>zlabel</td>
<td>Z-axis labels for 3-D plots</td>
</tr>
</tbody>
</table>

Surface, Mesh, and Contour Plots (Continued)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>mesh</td>
<td>3-D mesh with reference plane</td>
</tr>
<tr>
<td>peaks</td>
<td>A sample function of two variables</td>
</tr>
<tr>
<td>surf</td>
<td>3-D shaded surface graph</td>
</tr>
<tr>
<td>surface</td>
<td>Create surface low-level objects</td>
</tr>
<tr>
<td>surfc</td>
<td>Combination surf/contourplot</td>
</tr>
<tr>
<td>surfl</td>
<td>3-D shaded surface with lighting</td>
</tr>
<tr>
<td>trimesh</td>
<td>Triangular mesh plot</td>
</tr>
<tr>
<td>trisurf</td>
<td>Triangular surface plot</td>
</tr>
</tbody>
</table>

Surface, Mesh, and Contour Plots (Continued)

Volume Visualization

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>coneplot</td>
<td>Plot velocity vectors as cones in 3-D vector field</td>
</tr>
<tr>
<td>contourslice</td>
<td>Draw contours in volume slice plane</td>
</tr>
<tr>
<td>curl</td>
<td>Compute the curl and angular velocity of a vector field</td>
</tr>
<tr>
<td>divergence</td>
<td>Compute the divergence of a vector field</td>
</tr>
<tr>
<td>flow</td>
<td>Generate scalar volume data</td>
</tr>
<tr>
<td>interpstreamspeed</td>
<td>Interpolate streamline vertices from vector-field magnitudes</td>
</tr>
<tr>
<td>isocaps</td>
<td>Compute isosurface end-cap geometry</td>
</tr>
<tr>
<td>isocolors</td>
<td>Compute the colors of isosurface vertices</td>
</tr>
<tr>
<td>isonormals</td>
<td>Compute normals of isosurface vertices</td>
</tr>
<tr>
<td>isosurface</td>
<td>Extract isosurface data from volume data</td>
</tr>
<tr>
<td>reducepatch</td>
<td>Reduce the number of patch faces</td>
</tr>
<tr>
<td>reducevolume</td>
<td>Reduce number of elements in volume data</td>
</tr>
<tr>
<td>shrinkfaces</td>
<td>Reduce the size of patch faces</td>
</tr>
<tr>
<td>slice</td>
<td>Draw slice planes in volume</td>
</tr>
<tr>
<td>smooth3</td>
<td>Smooth 3-D data</td>
</tr>
</tbody>
</table>
Volume Visualization (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stream2</td>
<td>Compute 2-D stream line data</td>
</tr>
<tr>
<td>stream3</td>
<td>Compute 3-D stream line data</td>
</tr>
<tr>
<td>streamline</td>
<td>Draw stream lines from 2- or 3-D vector data</td>
</tr>
<tr>
<td>streamparticles</td>
<td>Draw stream particles from vector volume data</td>
</tr>
<tr>
<td>streamribbon</td>
<td>Draw stream ribbons from vector volume data</td>
</tr>
<tr>
<td>streamslice</td>
<td>Draw well-spaced stream lines from vector volume data</td>
</tr>
<tr>
<td>streamtube</td>
<td>Draw stream tubes from vector volume data</td>
</tr>
<tr>
<td>surf2patch</td>
<td>Convert surface data to patch data</td>
</tr>
<tr>
<td>subvolume</td>
<td>Extract subset of volume data set</td>
</tr>
</tbody>
</table>

Domain Generation

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>griddata</td>
<td>Data gridding and surface fitting</td>
</tr>
<tr>
<td>meshgrid</td>
<td>Generation of X and Y arrays for 3-D plots</td>
</tr>
</tbody>
</table>

Specialized Plotting (Continued)

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ezmeshc</td>
<td>Easy to use combination mesh/contour plotter</td>
</tr>
<tr>
<td>ezplot</td>
<td>Easy to use function plotter</td>
</tr>
<tr>
<td>ezplot3</td>
<td>Easy to use 3-D parametric curve plotter</td>
</tr>
<tr>
<td>ezpolar</td>
<td>Easy to use polar coordinate plotter</td>
</tr>
<tr>
<td>ezsurf</td>
<td>Easy to use 3-D colored surface plotter</td>
</tr>
<tr>
<td>ezsurfc</td>
<td>Easy to use combination surface/contour plotter</td>
</tr>
<tr>
<td>feather</td>
<td>Feather plot</td>
</tr>
<tr>
<td>fill</td>
<td>Draw filled 2-D polygons</td>
</tr>
<tr>
<td>fplot</td>
<td>Plot a function</td>
</tr>
<tr>
<td>inpolygon</td>
<td>True for points inside a polygonal region</td>
</tr>
<tr>
<td>pareto</td>
<td>Pareto char</td>
</tr>
<tr>
<td>pcolor</td>
<td>Pseudocolor (checkerboard) plot</td>
</tr>
<tr>
<td>pie3</td>
<td>3-D pie plot</td>
</tr>
<tr>
<td>plotmatrix</td>
<td>Scatter plot matrix</td>
</tr>
<tr>
<td>polyarea</td>
<td>Area of polygon</td>
</tr>
<tr>
<td>quiver</td>
<td>Quiver (or velocity) plot</td>
</tr>
<tr>
<td>ribbon</td>
<td>Ribbon plot</td>
</tr>
<tr>
<td>rose</td>
<td>Plot rose or angle histogram</td>
</tr>
<tr>
<td>scatter</td>
<td>Scatter plot</td>
</tr>
<tr>
<td>scatter3</td>
<td>3-D scatter plot</td>
</tr>
<tr>
<td>stairs</td>
<td>Stairstep graph</td>
</tr>
<tr>
<td>stem</td>
<td>Plot discrete sequence data</td>
</tr>
<tr>
<td>tsearch</td>
<td>Search for enclosing Delaunay triangle</td>
</tr>
<tr>
<td>voronoi</td>
<td>Voronoi diagram</td>
</tr>
</tbody>
</table>

Specialized Plotting

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>area</td>
<td>Area plot</td>
</tr>
<tr>
<td>box</td>
<td>Axis box for 2-D and 3-D plots</td>
</tr>
<tr>
<td>comet</td>
<td>Comet plot</td>
</tr>
<tr>
<td>compass</td>
<td>Compass plot</td>
</tr>
<tr>
<td>convhull</td>
<td>Convex hull</td>
</tr>
<tr>
<td>delaunay</td>
<td>Delaunay triangulation</td>
</tr>
<tr>
<td>dsearch</td>
<td>Search Delaunay triangulation for nearest point</td>
</tr>
<tr>
<td>errorbar</td>
<td>Plot graph with error bars</td>
</tr>
<tr>
<td>ezcontour</td>
<td>Easy to use contour plotter</td>
</tr>
<tr>
<td>ezcontourf</td>
<td>Easy to use filled contour plotter</td>
</tr>
<tr>
<td>ezmesh</td>
<td>Easy to use 3-D mesh plotter</td>
</tr>
</tbody>
</table>
View Control

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>camdolly</td>
<td>Move camera position and target</td>
</tr>
<tr>
<td>camlookat</td>
<td>View specific objects</td>
</tr>
<tr>
<td>camorbit</td>
<td>Orbit about camera target</td>
</tr>
<tr>
<td>campan</td>
<td>Rotate camera target about camera position</td>
</tr>
<tr>
<td>campos</td>
<td>Set or get camera position</td>
</tr>
<tr>
<td>camproj</td>
<td>Set or get projection type</td>
</tr>
<tr>
<td>camroll</td>
<td>Rotate camera about viewing axis</td>
</tr>
<tr>
<td>camtarget</td>
<td>Set or get camera target</td>
</tr>
<tr>
<td>camup</td>
<td>Set or get camera up-vector</td>
</tr>
<tr>
<td>camva</td>
<td>Set or get camera view angle</td>
</tr>
<tr>
<td>camzoom</td>
<td>Zoom camera in or out</td>
</tr>
<tr>
<td>daspect</td>
<td>Set or get data aspect ratio</td>
</tr>
<tr>
<td>pbsaspect</td>
<td>Set or get plot box aspect ratio</td>
</tr>
<tr>
<td>view</td>
<td>3-D graph viewpoint specification.</td>
</tr>
<tr>
<td>viewmtx</td>
<td>Generate view transformation matrices</td>
</tr>
<tr>
<td>xlim</td>
<td>Set or get the current x-axis limits</td>
</tr>
<tr>
<td>ylim</td>
<td>Set or get the current y-axis limits</td>
</tr>
<tr>
<td>zlim</td>
<td>Set or get the current z-axis limits</td>
</tr>
</tbody>
</table>

Transparency

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha</td>
<td>Set or query transparency properties for objects in current axes</td>
</tr>
<tr>
<td>alphamap</td>
<td>Specify the figure alphamap</td>
</tr>
<tr>
<td>alim</td>
<td>Set or query the axes alpha limits</td>
</tr>
</tbody>
</table>

Color Operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brighten</td>
<td>Brighten or darken color map</td>
</tr>
<tr>
<td>caxis</td>
<td>Pseudocolor axis scaling</td>
</tr>
<tr>
<td>colorbar</td>
<td>Display color bar (color scale)</td>
</tr>
<tr>
<td>colordef</td>
<td>Set up color defaults</td>
</tr>
<tr>
<td>colormap</td>
<td>Set the color look-up table (list of colormaps)</td>
</tr>
<tr>
<td>graymon</td>
<td>Graphics figure defaults set for grayscale monitor</td>
</tr>
<tr>
<td>hsv2rgb</td>
<td>Hue-saturation-value to red-green-blue conversion</td>
</tr>
<tr>
<td>rgb2hsv</td>
<td>RGB to HSV conversion</td>
</tr>
<tr>
<td>rgbplot</td>
<td>Plot color map</td>
</tr>
<tr>
<td>shading</td>
<td>Color shading mode</td>
</tr>
<tr>
<td>spinmap</td>
<td>Spin the colormap</td>
</tr>
<tr>
<td>surfnorm</td>
<td>3-D surface normals</td>
</tr>
<tr>
<td>whitebg</td>
<td>Change axes background color for plots</td>
</tr>
</tbody>
</table>

Colormaps

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>autumn</td>
<td>Shades of red and yellow color map</td>
</tr>
<tr>
<td>bone</td>
<td>Gray-scale with a tinge of blue color map</td>
</tr>
<tr>
<td>contrast</td>
<td>Gray color map to enhance image contrast</td>
</tr>
<tr>
<td>cool</td>
<td>Shades of cyan and magenta color map</td>
</tr>
<tr>
<td>copper</td>
<td>Linear copper-tone color map</td>
</tr>
</tbody>
</table>
Colormaps (Continued)

<table>
<thead>
<tr>
<th>Flag</th>
<th>Alternating red, white, blue, and black color map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gray</td>
<td>Linear gray-scale color map</td>
</tr>
<tr>
<td>Hot</td>
<td>Black-red-yellow-white color map</td>
</tr>
<tr>
<td>HSV</td>
<td>Hue-saturation-value (HSV) color map</td>
</tr>
<tr>
<td>Jet</td>
<td>Variant of HSV</td>
</tr>
<tr>
<td>Lines</td>
<td>Line color colormap</td>
</tr>
<tr>
<td>Prism</td>
<td>Colormap of prism colors</td>
</tr>
<tr>
<td>Spring</td>
<td>Shades of magenta and yellow color map</td>
</tr>
<tr>
<td>Summer</td>
<td>Shades of green and yellow color map</td>
</tr>
<tr>
<td>Winter</td>
<td>Shades of blue and green color map</td>
</tr>
</tbody>
</table>

Handle Graphics, General (Continued)

<table>
<thead>
<tr>
<th>Get</th>
<th>Get object properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ishandle</td>
<td>True for graphics objects</td>
</tr>
<tr>
<td>Rotate</td>
<td>Rotate objects about specified origin and direction</td>
</tr>
<tr>
<td>Set</td>
<td>Set object properties</td>
</tr>
</tbody>
</table>

Working with Application Data

<table>
<thead>
<tr>
<th>Get appdata</th>
<th>Get value of application data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isappdata</td>
<td>True if application data exists</td>
</tr>
<tr>
<td>Rmappdata</td>
<td>Remove application data</td>
</tr>
<tr>
<td>Setappdata</td>
<td>Specify application data</td>
</tr>
</tbody>
</table>

Handle Graphics, Object Creation

<table>
<thead>
<tr>
<th>Axes</th>
<th>Create axes object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure</td>
<td>Create figure (graph) windows</td>
</tr>
<tr>
<td>Image</td>
<td>Create image (2-D matrix)</td>
</tr>
<tr>
<td>Light</td>
<td>Create light object (illuminates patch and surface)</td>
</tr>
<tr>
<td>Line</td>
<td>Create line object (3-D polylines)</td>
</tr>
<tr>
<td>Patch</td>
<td>Create patch object (polygons)</td>
</tr>
<tr>
<td>Rectangle</td>
<td>Create rectangle object (2-D rectangle)</td>
</tr>
<tr>
<td>Surface</td>
<td>Create surface (quadrilaterals)</td>
</tr>
<tr>
<td>Text</td>
<td>Create text object (character strings)</td>
</tr>
<tr>
<td>Uicontextmenu</td>
<td>Create context menu (pop-up associated with object)</td>
</tr>
</tbody>
</table>

Handle Graphics, Figure Windows

<table>
<thead>
<tr>
<th>Capture</th>
<th>Screen capture of the current figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clc</td>
<td>Clear figure window</td>
</tr>
<tr>
<td>Clf</td>
<td>Clear figure</td>
</tr>
<tr>
<td>Close</td>
<td>Close specified window</td>
</tr>
<tr>
<td>Closereq</td>
<td>Default close request function</td>
</tr>
<tr>
<td>Gcf</td>
<td>Get current figure handle</td>
</tr>
</tbody>
</table>
Graphical User Interfaces

The graphical user interface functions let you build your own interfaces for your applications.

Dialog Boxes

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dialog</td>
<td>Create a dialog box</td>
</tr>
<tr>
<td>errordlg</td>
<td>Create error dialog box</td>
</tr>
<tr>
<td>helpdlg</td>
<td>Display help dialog box</td>
</tr>
<tr>
<td>inputdlg</td>
<td>Create input dialog box</td>
</tr>
<tr>
<td>listdlg</td>
<td>Create list selection dialog box</td>
</tr>
<tr>
<td>msgbox</td>
<td>Create message dialog box</td>
</tr>
<tr>
<td>pagedlg</td>
<td>Display page layout dialog box</td>
</tr>
<tr>
<td>printdlg</td>
<td>Display print dialog box</td>
</tr>
<tr>
<td>questdlg</td>
<td>Create question dialog box</td>
</tr>
<tr>
<td>uigetfile</td>
<td>Display dialog box to retrieve name of file for reading</td>
</tr>
<tr>
<td>uiputfile</td>
<td>Display dialog box to retrieve name of file for writing</td>
</tr>
<tr>
<td>uisetcolor</td>
<td>Interactively set a ColorSpec using a dialog box</td>
</tr>
<tr>
<td>uisetfont</td>
<td>Interactively set a font using a dialog box</td>
</tr>
<tr>
<td>warndlg</td>
<td>Create warning dialog box</td>
</tr>
</tbody>
</table>

User Interface Deployment

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>guidata</td>
<td>Store or retrieve application data</td>
</tr>
<tr>
<td>guihandles</td>
<td>Create a structure of handles</td>
</tr>
<tr>
<td>movegui</td>
<td>Move GUI figure onscreen</td>
</tr>
<tr>
<td>openfig</td>
<td>Open or raise GUI figure</td>
</tr>
</tbody>
</table>

User Interface Development

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>guide</td>
<td>Open the GUI Layout Editor</td>
</tr>
<tr>
<td>inspect</td>
<td>Display Property Inspector</td>
</tr>
</tbody>
</table>
User Interface Objects

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>menu</td>
<td>Generate a menu of choices for user input</td>
</tr>
<tr>
<td>uicontextmenu</td>
<td>Create context menu</td>
</tr>
<tr>
<td>uicontrol</td>
<td>Create user interface control</td>
</tr>
<tr>
<td>uimenu</td>
<td>Create user interface menu</td>
</tr>
</tbody>
</table>

Other Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dragrect</td>
<td>Drag rectangles with mouse</td>
</tr>
<tr>
<td>findfigs</td>
<td>Display off-screen visible figure windows</td>
</tr>
<tr>
<td>gcbf</td>
<td>Return handle of figure containing callback object</td>
</tr>
<tr>
<td>gcbo</td>
<td>Return handle of object whose callback is executing</td>
</tr>
<tr>
<td>rbbox</td>
<td>Create rubberband box for area selection</td>
</tr>
<tr>
<td>selectmoveresize</td>
<td>Select, move, resize, or copy axes and uicontrol graphics objects</td>
</tr>
<tr>
<td>textwrap</td>
<td>Return wrapped string matrix for given uicontrol</td>
</tr>
<tr>
<td>uiresume</td>
<td>Used with uiwait, controls program execution</td>
</tr>
<tr>
<td>uiwait</td>
<td>Used with uiresume, controls program execution</td>
</tr>
<tr>
<td>waitbar</td>
<td>Display wait bar</td>
</tr>
<tr>
<td>waitforbuttonpress</td>
<td>Wait for key/buttonpress over figure</td>
</tr>
</tbody>
</table>

Serial Port I/O

These functions provide direct access to peripheral devices that you connect to your computer’s serial port.

Creating a Serial Port Object

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>serial</td>
<td>Create a serial port object</td>
</tr>
</tbody>
</table>

Writing and Reading Data

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fgetl</td>
<td>Read one line of text from the device and discard the terminator</td>
</tr>
<tr>
<td>fgets</td>
<td>Read one line of text from the device and include the terminator</td>
</tr>
<tr>
<td>fprintf</td>
<td>Write text to the device</td>
</tr>
<tr>
<td>fread</td>
<td>Read binary data from the device</td>
</tr>
<tr>
<td>fscanf</td>
<td>Read data from the device, and format as text</td>
</tr>
<tr>
<td>fwrite</td>
<td>Write binary data to the device</td>
</tr>
<tr>
<td>readasync</td>
<td>Read data asynchronously from the device</td>
</tr>
<tr>
<td>stopasync</td>
<td>Stop asynchronous and write operations</td>
</tr>
</tbody>
</table>

Configuring and Returning Properties

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get</td>
<td>Return serial port object properties</td>
</tr>
<tr>
<td>set</td>
<td>Configure or display serial port object properties</td>
</tr>
</tbody>
</table>

State Change

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fclose</td>
<td>Disconnect a serial port object from the device</td>
</tr>
<tr>
<td>fopen</td>
<td>Connect a serial port object to the device</td>
</tr>
<tr>
<td>record</td>
<td>Record data and event information to a file</td>
</tr>
</tbody>
</table>
General Purpose

<table>
<thead>
<tr>
<th>clear</th>
<th>Remove a serial port object from the MATLAB workspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>delete</td>
<td>Remove a serial port object from memory</td>
</tr>
<tr>
<td>disp</td>
<td>Display serial port object summary information</td>
</tr>
<tr>
<td>instruction</td>
<td>Display event information when an event occurs</td>
</tr>
<tr>
<td>instrfind</td>
<td>Return serial port objects from memory to the MATLAB workspace</td>
</tr>
<tr>
<td>isvalid</td>
<td>Determine if serial port objects are valid</td>
</tr>
<tr>
<td>length</td>
<td>Length of serial port object array</td>
</tr>
<tr>
<td>load</td>
<td>Load serial port objects and variables into the MATLAB workspace</td>
</tr>
<tr>
<td>save</td>
<td>Save serial port objects and variables to a MAT-file</td>
</tr>
<tr>
<td>serialbreak</td>
<td>Send a break to the device connected to the serial port</td>
</tr>
<tr>
<td>size</td>
<td>Size of serial port object array</td>
</tr>
</tbody>
</table>
Symbolic Math Toolbox
Quick Reference

Introduction B-2
Arithmetic Operations B-3
Basic Operations B-3
Calculus B-3
Conversions B-3
Integral Transforms B-3
Linear Algebra B-3
Pedagogical and Graphical Applications B-4
Simplification B-4
Solution of Equations B-4
Special Functions B-4
Variable Precision Arithmetic B-4
Introduction

This appendix lists the Symbolic Math Toolbox functions that are available in the Student Version of MATLAB & Simulink. For complete information about any of these functions, use Help and select Reference from the Symbolic Math Toolbox.

Note All of the functions listed in Symbolic Math Toolbox Reference are available in the Student Version of MATLAB & Simulink except maple, mapleinit, mfun, mfunlist, and mhelp.
<table>
<thead>
<tr>
<th>Arithmetic Operations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>Addition</td>
</tr>
<tr>
<td>-</td>
<td>Subtraction</td>
</tr>
<tr>
<td>*</td>
<td>Multiplication</td>
</tr>
<tr>
<td>.*</td>
<td>Array multiplication</td>
</tr>
<tr>
<td>/</td>
<td>Right division</td>
</tr>
<tr>
<td>./</td>
<td>Array right division</td>
</tr>
<tr>
<td>\</td>
<td>Left division</td>
</tr>
<tr>
<td>./</td>
<td>Array left division</td>
</tr>
<tr>
<td>^</td>
<td>Matrix or scalar raised to a power</td>
</tr>
<tr>
<td>.^</td>
<td>Array raised to a power</td>
</tr>
<tr>
<td>'</td>
<td>Complex conjugate transpose</td>
</tr>
<tr>
<td>.'</td>
<td>Real transpose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Basic Operations</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ccode</td>
<td>C code representation of a symbolic expression</td>
</tr>
<tr>
<td>conj</td>
<td>Complex conjugate</td>
</tr>
<tr>
<td>findsym</td>
<td>Determine symbolic variables</td>
</tr>
<tr>
<td>fortran</td>
<td>Fortran representation of a symbolic expression</td>
</tr>
<tr>
<td>imag</td>
<td>Imaginary part of a complex number</td>
</tr>
<tr>
<td>latex</td>
<td>\LaTeX representation of a symbolic expression</td>
</tr>
<tr>
<td>pretty</td>
<td>Pretty print a symbolic expression</td>
</tr>
<tr>
<td>real</td>
<td>Real part of an imaginary number</td>
</tr>
<tr>
<td>sym</td>
<td>Create symbolic object</td>
</tr>
<tr>
<td>syms</td>
<td>Shortcut for creating multiple symbolic objects</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculus</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>diff</td>
<td>Differentiate</td>
</tr>
<tr>
<td>int</td>
<td>Integrate</td>
</tr>
<tr>
<td>jacobian</td>
<td>Jacobian matrix</td>
</tr>
<tr>
<td>limit</td>
<td>Limit of an expression</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calculus (Continued)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>symsum</td>
<td>Summation of series</td>
</tr>
<tr>
<td>taylor</td>
<td>Taylor series expansion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conversions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>Convert sym object to string</td>
</tr>
<tr>
<td>double</td>
<td>Convert symbolic matrix to double</td>
</tr>
<tr>
<td>poly2sym</td>
<td>Function calculator</td>
</tr>
<tr>
<td>sym2poly</td>
<td>Symbolic polynomial to coefficient vector</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integral Transforms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>fourier</td>
<td>Fourier transform</td>
</tr>
<tr>
<td>ifourier</td>
<td>Inverse Fourier transform</td>
</tr>
<tr>
<td>ilaplace</td>
<td>Inverse Laplace transform</td>
</tr>
<tr>
<td>iztrans</td>
<td>Inverse z-transform</td>
</tr>
<tr>
<td>laplace</td>
<td>Laplace transform</td>
</tr>
<tr>
<td>ztrans</td>
<td>z-transform</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear Algebra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>colspace</td>
<td>Basis for column space</td>
</tr>
<tr>
<td>det</td>
<td>Determinant</td>
</tr>
<tr>
<td>diag</td>
<td>Create or extract diagonals</td>
</tr>
<tr>
<td>eig</td>
<td>Eigenvalues and eigenvectors</td>
</tr>
<tr>
<td>expm</td>
<td>Matrix exponential</td>
</tr>
<tr>
<td>inv</td>
<td>Matrix inverse</td>
</tr>
<tr>
<td>jordan</td>
<td>Jordan canonical form</td>
</tr>
<tr>
<td>null</td>
<td>Basis for null space</td>
</tr>
<tr>
<td>poly</td>
<td>Characteristic polynomial</td>
</tr>
<tr>
<td>rank</td>
<td>Matrix rank</td>
</tr>
<tr>
<td>rref</td>
<td>Reduced row echelon form</td>
</tr>
<tr>
<td>svd</td>
<td>Singular value decomposition</td>
</tr>
<tr>
<td>triu</td>
<td>Upper triangle</td>
</tr>
<tr>
<td>triu</td>
<td>Lower triangle</td>
</tr>
</tbody>
</table>
Pedagogical and Graphical Applications

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ezcontour</td>
<td>Contour plotter</td>
</tr>
<tr>
<td>ezcontourf</td>
<td>Filled contour plotter</td>
</tr>
<tr>
<td>ezmesh</td>
<td>Mesh plotter</td>
</tr>
<tr>
<td>ezmeshc</td>
<td>Combined mesh and contour plotter</td>
</tr>
<tr>
<td>ezplot</td>
<td>Function plotter</td>
</tr>
<tr>
<td>ezplot3</td>
<td>Easy-to-use function plotter</td>
</tr>
<tr>
<td>ezpolar</td>
<td>Polar coordinate plotter</td>
</tr>
<tr>
<td>ezsurf</td>
<td>Surface plotter</td>
</tr>
<tr>
<td>ezsurfc</td>
<td>Combined surface and contour plotter</td>
</tr>
<tr>
<td>funtool</td>
<td>Function calculator</td>
</tr>
<tr>
<td>rsums</td>
<td>Riemann sums</td>
</tr>
<tr>
<td>taylortool</td>
<td>Taylor series calculator</td>
</tr>
</tbody>
</table>

Special Functions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cosint</td>
<td>Cosine integral, $C_i(x)$</td>
</tr>
<tr>
<td>lambertw</td>
<td>Solution of $\lambda(x)e^{\lambda(x)} = x$</td>
</tr>
<tr>
<td>sinint</td>
<td>Sine integral, $Si(x)$</td>
</tr>
<tr>
<td>zeta</td>
<td>Riemann zeta function</td>
</tr>
</tbody>
</table>

Simplification

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>collect</td>
<td>Collect common terms</td>
</tr>
<tr>
<td>expand</td>
<td>Expand polynomials and elementary functions</td>
</tr>
<tr>
<td>factor</td>
<td>Factor</td>
</tr>
<tr>
<td>horner</td>
<td>Nested polynomial representation</td>
</tr>
<tr>
<td>numden</td>
<td>Numerator and denominator</td>
</tr>
<tr>
<td>simple</td>
<td>Search for shortest form</td>
</tr>
<tr>
<td>simplify</td>
<td>Simplification</td>
</tr>
<tr>
<td>subexpr</td>
<td>Rewrite in terms of subexpressions</td>
</tr>
</tbody>
</table>

Solution of Equations

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>compose</td>
<td>Functional composition</td>
</tr>
<tr>
<td>dsolve</td>
<td>Solution of differential equations</td>
</tr>
<tr>
<td>finverse</td>
<td>Functional inverse</td>
</tr>
<tr>
<td>solve</td>
<td>Solution of algebraic equations</td>
</tr>
</tbody>
</table>

Variable Precision Arithmetic

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>digits</td>
<td>Set variable precision accuracy</td>
</tr>
<tr>
<td>vpa</td>
<td>Variable precision arithmetic</td>
</tr>
</tbody>
</table>
Symbols
: operator 4-7
@sym directory 7-15
\ 7-65, 7-66

A
abstract functions 7-10
Airy differential equation 7-93
Airy function 7-93
algorithms
 vectorizing 6-23
animation 5-37
annotating plots 5-14
ans 4-4
Application Program Interface (API) 1-13
Array Editor 3-13
array operators 4-22
arrays 4-18, 4-21
 cell 6-9
 character 6-11
 columnwise organization 4-23
 concatenating 4-16
 creating in M-files 4-15
 deleting rows and columns 4-16
 deleting rows or columns 4-16
 elements 4-10
 generating with functions and operators 4-14
 listing contents 4-10
 loading from external data files 4-15
 multidimensional 6-7
 notation for elements 4-10
 preallocating 6-23
 structure 6-14
 variable names 4-10
aspect ratio of axes 5-11
axes 5-10
axis
 labels 5-12
 titles 5-12
axis 5-10

B
backslash operator 7-65
Bessel functions
 differentiating 7-17
 integrating 7-24
besselj 7-17
besselk 7-93
bit map 5-25
bitwise functions A-17
blockset 1-14
bookmarking documentation 3-10
books
 MATLAB-related 1-10
branch cut 7-42
break 6-6

C
calculus 7-16–7-42
case 6-4
cell array functions A-19
cell arrays 6-9
char 6-13
character arrays 6-11
character string functions A-16
characteristic polynomial 4-21, 7-69, 7-71
circulant matrix 7-10, 7-53
clear 7-26
clearing variables
 in the Maple workspace 7-27
in the MATLAB workspace 7-27
collect 7-44
colon operator 4-7
colormap 5-20
colors
 lines for plotting 5-4
colspace 7-66
column space 7-66
Command History 3-7
command line editing 4-30
Command Window 3-6
commands
 general purpose A-3–A-4
comp.soft-sys.matlab 1-10
complex numbers, plotting 5-6
complex symbolic variables 7-9
concatenating
 arrays 4-16
 strings 6-13
concatenation 4-16
configuring additional products
 on Linux 2-13
 on PC 2-5
configuring the desktop 3-5
conj 7-9
constants
 special 4-12
contents in Help browser 3-10
continue 6-5
continuing statements on multiple lines 4-30
converting symbolic matrices to numeric form 7-8
coordinate system conversion A-10
current directory 3-11
Current Directory browser 3-11

D
data analysis and Fourier transform functions A-11–A-12
data visualization A-19–A-24
debugging commands A-6–A-7
debugging M-files 3-14
decimal symbolic expressions 7-8
default symbolic variable 7-11
definite integration 7-23
deleting array elements 4-16
demonstration programs 6-27
demos
 MATLAB 1-6
demos 6-27
demos, running from the Launch Pad 3-8
desktop for MATLAB 3-4
desktop tools 3-6
determinant of matrix 4-19
development environment 3-2
diag 4-5
diff 7-16
differentiation 7-16–7-19
digits 7-8
discontinuities 7-41
display pane in Help browser 3-10
documentation 3-8
documentation path
 setting on Linux 2-12
double 7-61
dsolve 7-90

E
editing command lines 4-30
editing plots
 interactively 5-15
Editor/Debugger 3-14
eig 7-68
eigenvalue 4-20
eigenvalue trajectories 7-78–7-85
eigenvalues 7-68–7-74, 7-79
 computing 7-68
eigenvector 4-20, 7-69
elementary math functions A-8–A-9
elementary matrices and matrix manipulation
 A-7–A-8
elements of arrays 4-10
entering matrices 4-3
environment 3-2
eps 7-8
erase mode 5-37
eval 6-22
executing MATLAB 3-3
exiting MATLAB 3-3
expand 7-44
exporting data 3-15
expressions 4-10, 4-13
 evaluating 6-22
external programs, running from MATLAB 3-7
ezplot 7-30

f
factor 7-45
favorites in Help browser 3-10
figure 5-9
figure windows 5-9
 with multiple plots 5-9
file I/O functions A-17
find 4-26
finding in a page 3-10
finding object handles 5-33
findsym 7-13
flplr 4-5
floating-point arithmetic 7-58
floating-point numbers 4-11
floating-point symbolic expressions 7-7
flow control 6-2
for 6-4
format
 of output display 4-28
format 4-28, 7-58
function 6-19
function functions 6-24
 nonlinear numerical methods A-13
function handles
 defined 6-24
 using 6-25
function M-file 6-17, 6-18
function of two variables 5-18
functions 4-11, 6-18
 bitwise A-17
 built-in 4-12
 cell array A-19
 character string A-16
 coordinate system conversion A-10
 data analysis and Fourier transform A-11–A-12
 data visualization A-19–A-24
 elementary math A-8–A-9
 elementary matrices and matrix manipulation
 A-7–A-8
file I/O A-17
finding specific 1-7
function functions - nonlinear numerical
 methods A-13
general purpose commands A-3–A-4
graphical user interface control A-24–A-25
java interface A-18
language constructs and debugging A-5–A-7
logical A-5
matrix functions - numerical linear algebra
 A-10-A-11
multidimensional array A-19
object A-18
operators and special characters A-5
polynomial and interpolation A-12-A-13
serial port I/O A-25-A-26
sound processing A-15
sparse matrix A-14-A-15
specialized math A-9
specialized matrices A-8
structure A-18
variable number of arguments 6-19

G
Givens transformation 7-63, 7-72
global variables 6-20
golden ratio 7-6
graphical user interface 5-35
graphical user interface control A-24-A-25
graphics
 2-D 5-2
 files 5-26
 handle graphics 5-28
 objects 5-28
 printing 5-26
grids 5-12
guide 5-35

H
Handle Graphics 1-13, 5-28
 finding handles 5-33
 properties 5-31
Help
 accessing 1-8
 accessing on Linux 2-14
 accessing on PC 2-6
help
 sources of 1-8
 via MathWorks Knowledge Base 1-10
 via MathWorks Web site 1-10
 via newsgroup 1-10
 Help browser 3-8
 help functions 3-10
 Help Navigator 3-10
 hierarchy of graphics objects 5-29
 Hilbert matrix 7-8, 7-64
 hold 5-7
 horner 7-45

I
IEEE floating-point arithmetic 7-59
if 6-2
images 5-24
imaginary number 4-10
Import Wizard 3-15
importing data 3-15
index in Help browser 3-10
installation procedure
 selecting products on Linux 2-11
installation root directory
 specifying 2-10
installing MATLAB
 on Linux 2-8
 on PC 2-4
installing toolboxes
 on Linux 2-13
 on PC 2-5
int 7-22
integration 7-22-7-27
definite 7-23
with real constants 7-24

J
jacobi 7-18
Jacobian 7-18
Jacobian matrix 7-18
jordan 7-74
Jordan canonical form 7-74–7-75

L
language constructs A-5–A-6
Launch Pad 3-8
learning MATLAB 1-6
legend 5-3
legend, adding to plot 5-3
library
 mathematical function 1-13
license agreement 2-10
lighting 5-21
limit 7-20
limits 7-20–7-21
 two-sided 7-20
 undefined 7-21
limits, axes 5-11
line continuation 4-30
line styles of plots 5-4
linear algebra 7-63–7-85
Linux
 setting online documentation path 2-12
load 4-15
loading arrays 4-15
local variables 6-19
log of functions used 3-7
logical functions A-5
logical vectors 4-25

M
machine epsilon 7-8
Maclaurin series 7-28
magic 4-8
magic square 4-4
Maple 7-2
markers 5-5
MAT-file 5-24
mathematical function library 1-13
mathematical functions
 listing advanced 4-12
 listing elementary 4-11
 listing matrix 4-12
MathWorks Knowledge Base 1-10
MathWorks Store
 purchasing products from 1-10
MathWorks Web site 1-10
MATLAB
 Application Program Interface 1-13
 books 1-10
 calling C subroutine 2-3, 2-8
 calling Fortran subroutine 2-3, 2-8
 demos 1-6
 history 1-12
 how to learn 1-6
 installing on Linux 2-8
 installing on PC 2-4
 language 1-13
 mathematical function library 1-13
 overview 1-12
 starting on Linux 2-13
 supported Linux compilers 2-8
 supported PC compilers 2-3
matlab command
 setting up symbolic link 2-12
matrices 4-18
 creating 4-14
Index

entering 4-3
matrix 4-2
 antidiagonal 4-5
determinant 4-19
main diagonal 4-5
singular 4-19
swapping columns 4-8
symmetric 4-18
transpose 4-4
matrix condition number 7-66
matrix functions - numerical linear algebra A-10–A-11
matrix multiplication 4-18
mesh plot 5-18
mex command
 setting up symbolic link 2-12
MEX-file 2-3, 2-8
 supported PC compilers 2-3
M-file 1-12, 4-15, 6-17
 creating 6-17, 7-15
 for creating arrays 4-15
 function 6-17, 6-18
 script 6-17
M-file performance 3-15
M-files 3-14
Microsoft Word and access to MATLAB 3-15
movies 5-38
multidimensional array functions A-19
multidimensional arrays 6-7
multiple data sets, plotting 5-3
multiple plots per figure 5-9
multivariate data, organizing 4-23

Notebook 3-15
null 7-66
null space 7-66
numbers 4-10
 floating-point 4-11
numeric symbolic expressions 7-7

O
object functions A-18
object properties 5-31
objects
 finding handles 5-33
 graphics 5-28
online documentation
 specifying viewing options on Linux 2-12
online help, viewing 3-8
operator 4-11, A-5
 colon 4-7
output
 controlling format 4-28
 suppressing 4-30
overlaying plots 5-7

P
path 3-12
performance of M-files 3-15
plot 5-2
plot editing mode
 overview 5-15
plots
 editing 5-14
plotting
 adding legend 5-3
 adding plots 5-7
 annotating 5-14

N
newsgroup 1-10
newsgroup for MATLAB users 3-11
basic 5-2
complex data 5-6
complex numbers 5-6
contours 5-8
line colors 5-4
line styles 5-4
lines and markers 5-5
mesh and surface 5-18
multiple data sets 5-3
multiple plots 5-9
poly 7-69
polynomial and interpolation functions A-12–A-13
PostScript 5-26
preallocation 6-23
preferences 3-5
pretty 7-28
print 5-26
printing
 graphics 5-26
product
 registration 1-11
professional version
 differences with Student Version 1-3
profiler 3-15
Property Editor
 interface 5-16

Q
quitting MATLAB 3-3

R
rational arithmetic 7-59
rational symbolic expressions 7-7
ReadMe file 2-5
real property 7-9
real symbolic variables 7-9, 7-26
reference information, obtaining 1-7
registering your software 1-11
revision control systems, interfacing to MATLAB 3-15
root directory
 specifying 2-10
Rosser matrix 7-70, 7-71
running functions 3-6
running MATLAB 3-3

S
scalar expansion 4-24
scientific notation 4-10
screens
 installation data 2-12
 root directory 2-10
script M-file 6-17
scripts 6-17
search path 3-12
searching documentation 3-10
selecting products to be installed on Linux 2-11
semicolon to suppress output 4-30
serial port I/O functions A-25–A-26
shutting down MATLAB 3-3
simple 7-48
simplifications 7-43–7-50
simplify 7-47
Simulink 1-14
simultaneous differential equations
 solving 7-92
simultaneous linear equations
 solving systems of 7-65, 7-89
singular matrix 4-19
singular value decomposition 7-76–7-78
solve 7-86
solving equations 7-86–7-93
 algebraic 7-86–7-90
 ordinary differential 7-90–7-93
sound processing functions A-15
source control systems, interfacing to MATLAB 3-15
sparse matrix functions A-14–A-15
special characters A-5
special constants 4-12
 infinity 4-12
 not-a-number 4-12
specialized graphs 5-8
specialized math functions A-9
specialized matrices A-8
specifying viewing options on Linux 2-12
spherical coordinates 7-18
starting MATLAB 3-3
startup.m file 2-5, 2-13
Stateflow 1-14
statements
 continuing on multiple lines 4-30
 executing 6-22
strings
 concatenating 6-13
structure functions A-18
structures 6-14
Student Version
 differences with professional version 1-3
 MATLAB differences 1-3
 Simulink differences 1-4
 Symbolic Math Toolbox differences 1-4
subexpr 7-51
subexpressions 7-51–7-53
subplot 5-9
subs 7-53
subscripting
 with logical vectors 4-25
subscripts 4-6
substitutions 7-51–7-57
sum 4-4
summation
 symbolic 7-27
support
 sources of 1-8
suppressing output 4-30
surface plot 5-18
svd 7-76
switch 6-4
sym 7-5, 7-6, 7-7, 7-8, 7-26
symbolic expressions 7-86
 creating 7-6
 decimal 7-8
 floating-point 7-7
 numeric 7-7
 rational 7-7
symbolic links
 setting up 2-12
symbolic math functions
 creating 7-14
Symbolic Math Toolbox
 demo 7-5
 learning 1-7
Symbolic Math Toolbox functions
 arithmetic operations B-3
 basic operations B-3
 calculus B-3
 conversions B-3
 integral transforms B-3
 linear algebra B-3
 pedagogical and graphical applications B-4
 simplification B-4
 solution of equations B-4
 special functions B-4
variable precision arithmetic B-4
symbolic matrix
 computing eigenvalue of 7-71
 converting to numeric form 7-8
 creating 7-10
 differentiating 7-17
symbolic objects
 about 7-5
symbolic summation 7-27
symbolic variables
 complex 7-9
 creating 7-6
 default 7-11
 real 7-9, 7-26
symmetric matrix 4-18
 syms 7-7
 symsum 7-27
system requirements
 Linux 2-7
 PC 2-2

T
 taylor 7-28
 Taylor series 7-28
 technical support 1-11
text 6-11
TIFF 5-27
title
 figure 5-12
toolbox 1-12
toolboxes
 installing on Linux 2-13
 installing on PC 2-5
tools in the desktop 3-6
transpose 4-4
troubleshooting 1-8

U
 unreal property 7-9
user interface 5-35
 building 5-35

V
variable-precision arithmetic 7-58–7-62
variable-precision numbers 7-60
variables 4-10
 global 6-20
 local 6-19
vector 4-2
 logical 4-25
 preallocating 6-23
vectorization 6-23
version control systems, interfacing to MATLAB 3-15
viewing documentation 3-10
visibility of axes 5-11
vpa 7-60

W
Web site 1-10
while 6-5
windows for plotting 5-9
windows in MATLAB 3-4
wireframe 5-18
 surface 5-18
Word and access to MATLAB 3-15
word processing access to MATLAB 3-15
workspace 3-12
Workspace browser 3-12
www.mathworks.com 1-10
www.mathworks.com/education 1-10
www.mathworks.com/store 1-10, 2-5, 2-13
www.mathworks.com/support 1-8, 1-11
www.mathworks.com/support/books 1-10

X
xor erase mode 5-37